• Previous Article
    On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in $R^3$: A computational approach
  • CPAA Home
  • This Issue
  • Next Article
    Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit
September  2014, 13(5): 2095-2113. doi: 10.3934/cpaa.2014.13.2095

Stability of delay evolution equations with stochastic perturbations

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla

2. 

Department of Higher Mathematics, Donetsk State University of Management, Chelyuskintsev str., 163-a, Donetsk, 83015

Received  December 2012 Revised  February 2013 Published  June 2014

The investigation of stability for hereditary systems is often related to the construction of Lyapunov functionals. The general method of Lyapunov functionals construction, which was proposed by V.Kolmanovskii and L.Shaikhet, is used here to investigate the stability of stochastic delay evolution equations, in particular, for stochastic partial differential equations. This method had already been successfully used for functional-differential equations, for difference equations with discrete time, and for difference equations with continuous time. It is shown that the stability conditions obtained for stochastic 2D Navier-Stokes model with delays are essentially better than the known ones.
Citation: Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095
References:
[1]

T. Caraballo, M. J. Garrido-Atienza and J. Real, Asymptotic stability of nonlinear stochastic evolution equations,, \emph{Stoch. Anal. Appl.}, 21 (2003), 301.  doi: 10.1081/SAP-120019288.  Google Scholar

[2]

T. Caraballo and K. Liu, Exponential stability of mild solutions of stochastic partial differential equations with delays,, \emph{Stoch. Anal. Appl.}, 15 (1999), 743.  doi: 10.1080/07362999908809633.  Google Scholar

[3]

T. Caraballo, K. Liu and A. Truman, Stochastic functional partial differential equations: existence, uniqueness and asymptotic decay properties,, \emph{Proc. Roy. Soc. Lond. A}, 456 (2000), 1775.  doi: 10.1098/rspa.2000.0586.  Google Scholar

[4]

T. Caraballo, J. Real and L. Shaikhet, Method of Lyapunov functionals construction in stability of delay evolution equations,, \emph{J. Math. Anal. Appl.}, 334 (2007), 1130.  doi: 10.1016/j.jmaa.2007.01.038.  Google Scholar

[5]

H. Chen, Asymptotic behavior of stochastic two-dimensional Navier-Stokes equations with delays,, \emph{Proc. Indian Acad. Sci (Math. Sci)}, 122 (2012), 283.  doi: 10.1007/s12044-012-0071-x.  Google Scholar

[6]

V. Kolmanovskii and L. Shaikhet, A method of Lyapunov functionals construction for stochastic differential equations of neutral type,, \emph{Differentialniye uravneniya}, 31 (2002), 691.   Google Scholar

[7]

V. Kolmanovskii and L. Shaikhet, Construction of Lyapunov functionals for stochastic hereditary systems: a survey of some recent results,, \emph{Mathematical and Computer Modelling}, 36 (1995), 1851.   Google Scholar

[8]

J. Luo, Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays,, \emph{J. Math. anal. Appl.}, 342 (2008), 753.  doi: 10.1016/j.jmaa.2007.11.019.  Google Scholar

[9]

E. Pardoux, Equations aux dérivées partielles stochastiques nonlinéaires monotones,, Ph.D thesis, (1975).   Google Scholar

[10]

G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Encyclopedia of mathematics and its applications,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[11]

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Difference Equations,, Springer, (2011).  doi: 10.1007/978-0-85729-685-6.  Google Scholar

[12]

L. Shaikhet, Modern state and development perspectives of Lyapunov functionals method in the stability theory of stochastic hereditary systems,, \emph{Theory of Stochastic Processes}, 2 (1996), 248.   Google Scholar

[13]

L. Wan and J. Duan, Exponential stability of non-autonomous stochastic partial differential equations with finite memory,, \emph{Statistics and Probability Letters}, 78 (2008), 490.  doi: 10.1016/j.spl.2007.08.003.  Google Scholar

[14]

M. Wei and T. Zhang, Exponential stability for stochastic 2D-Navier-Stokes equations with time delay,, \emph{Appl. Math. J. Chinese Univ.}, 24 (2009), 493.   Google Scholar

show all references

References:
[1]

T. Caraballo, M. J. Garrido-Atienza and J. Real, Asymptotic stability of nonlinear stochastic evolution equations,, \emph{Stoch. Anal. Appl.}, 21 (2003), 301.  doi: 10.1081/SAP-120019288.  Google Scholar

[2]

T. Caraballo and K. Liu, Exponential stability of mild solutions of stochastic partial differential equations with delays,, \emph{Stoch. Anal. Appl.}, 15 (1999), 743.  doi: 10.1080/07362999908809633.  Google Scholar

[3]

T. Caraballo, K. Liu and A. Truman, Stochastic functional partial differential equations: existence, uniqueness and asymptotic decay properties,, \emph{Proc. Roy. Soc. Lond. A}, 456 (2000), 1775.  doi: 10.1098/rspa.2000.0586.  Google Scholar

[4]

T. Caraballo, J. Real and L. Shaikhet, Method of Lyapunov functionals construction in stability of delay evolution equations,, \emph{J. Math. Anal. Appl.}, 334 (2007), 1130.  doi: 10.1016/j.jmaa.2007.01.038.  Google Scholar

[5]

H. Chen, Asymptotic behavior of stochastic two-dimensional Navier-Stokes equations with delays,, \emph{Proc. Indian Acad. Sci (Math. Sci)}, 122 (2012), 283.  doi: 10.1007/s12044-012-0071-x.  Google Scholar

[6]

V. Kolmanovskii and L. Shaikhet, A method of Lyapunov functionals construction for stochastic differential equations of neutral type,, \emph{Differentialniye uravneniya}, 31 (2002), 691.   Google Scholar

[7]

V. Kolmanovskii and L. Shaikhet, Construction of Lyapunov functionals for stochastic hereditary systems: a survey of some recent results,, \emph{Mathematical and Computer Modelling}, 36 (1995), 1851.   Google Scholar

[8]

J. Luo, Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays,, \emph{J. Math. anal. Appl.}, 342 (2008), 753.  doi: 10.1016/j.jmaa.2007.11.019.  Google Scholar

[9]

E. Pardoux, Equations aux dérivées partielles stochastiques nonlinéaires monotones,, Ph.D thesis, (1975).   Google Scholar

[10]

G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Encyclopedia of mathematics and its applications,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[11]

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Difference Equations,, Springer, (2011).  doi: 10.1007/978-0-85729-685-6.  Google Scholar

[12]

L. Shaikhet, Modern state and development perspectives of Lyapunov functionals method in the stability theory of stochastic hereditary systems,, \emph{Theory of Stochastic Processes}, 2 (1996), 248.   Google Scholar

[13]

L. Wan and J. Duan, Exponential stability of non-autonomous stochastic partial differential equations with finite memory,, \emph{Statistics and Probability Letters}, 78 (2008), 490.  doi: 10.1016/j.spl.2007.08.003.  Google Scholar

[14]

M. Wei and T. Zhang, Exponential stability for stochastic 2D-Navier-Stokes equations with time delay,, \emph{Appl. Math. J. Chinese Univ.}, 24 (2009), 493.   Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[4]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[7]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[8]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[9]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[10]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[11]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[12]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[13]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[14]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[15]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[16]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[19]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[20]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]