-
Previous Article
Bounds on energy and enstrophy for the 3D Navier-Stokes-$\alpha$ and Leray-$\alpha$ models
- CPAA Home
- This Issue
-
Next Article
Stability of delay evolution equations with stochastic perturbations
On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in $R^3$: A computational approach
1. | Department of Mathematics, Texas A\&M University, College Station, TX 77845, United States |
2. | University of Houston, Department of Mathematics, 4800 Calhoun Rd, Houston, Texas 77204 - 3008 |
References:
[1] |
W. Bangerth, R. Hartmann and G. Kanschat, deal.II-a general purpose object oriented finite element library,, \emph{ACM Trans. Math. Softw.}, 33 (2007), 1.
doi: 10.1145/1268776.1268779. |
[2] |
A. Bonito, J. M. Cascón, P. Morin and R. H. Nochetto, AFEM for geometric PDE: The Laplace-Beltrami operator,, in \emph{Analysis and Numerics of Partial Differential Equations}, (2013), 257.
doi: 10.1007/978-88-470-2592-9_15. |
[3] |
A. Bonito and R. H. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method,, \emph{SIAM J. Numer. Anal.}, 48 (2010), 734.
doi: 10.1137/08072838X. |
[4] |
A. Bonito and J. E. Pasciak, Convergence analysis of variational and non-variational multigrid algorithms for the Laplace-Beltrami operator,, \emph{Math. Comp.}, 81 (2012), 1263.
doi: 10.1090/S0025-5718-2011-02551-2. |
[5] |
A. Bonito and M. S. Pauletti, The step-38 tutorial progam: The laplace-beltrami operator,, \emph{http://www.dealii.org.}, (). Google Scholar |
[6] |
S. Y. Cheng, Eigenfunctions and nodal sets,, \emph{Comment. Math. Helv.}, 51 (1976), 43.
|
[7] |
G. Dziuk, An algorithm for evolutionary surfaces,, \emph{Numer. Math.}, 58 (1991), 603.
doi: 10.1007/BF01385643. |
[8] |
F. J. Foss, II, R. Glowinski and R. H. W. Hoppe, On the numerical solution of a semilinear elliptic eigenproblem of Lane-Emden type. I. Problem formulation and description of the algorithms,, \emph{J. Numer. Math.}, 15 (2007), 181.
doi: 10.1515/jnma.2007.009. |
[9] |
F. J. Foss, II, R. Glowinski and R. H. W. Hoppe, On the numerical solution of a semilinear elliptic eigenproblem of Lane-Emden type. II. Numerical experiments,, \emph{J. Numer. Math.}, 15 (2007), 277.
doi: 10.1515/jnum.2007.013. |
[10] |
R. Glowinski and D. C. Sorensen, Computing the eigenvalues of the Laplace-Beltrami operator on the surface of a torus: a numerical approach,, in \emph{Partial Differential Equations}, (2008), 225.
doi: 10.1007/978-1-4020-8758-5_12. |
[11] |
V. Hernandez, J. E. Roman and V. Vicente, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,, \emph{ACM Trans. Math. Software}, 31 (2005), 351.
doi: 10.1145/1089014.1089019. |
[12] |
R. Lai, Y. Shi, I. Dinov, T. F. Chan and A. W. Toga, Laplace-Beltrami nodal counts: a new signature for 3D shape analysis,, in \emph{2009 IEEE International symposium on biomedical imaging: From nano to macro, (2009), 694. Google Scholar |
[13] |
R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK Users' Guide, volume 6 of Software, Environments, and Tools,, Society for Industrial and Applied Mathematics (SIAM), (1998).
doi: 10.1137/1.9780898719628. |
[14] |
K. Uhlenbeck, Generic properties of eigenfunctions,, \emph{Amer. J. Math.}, 98 (1976), 1059.
|
show all references
References:
[1] |
W. Bangerth, R. Hartmann and G. Kanschat, deal.II-a general purpose object oriented finite element library,, \emph{ACM Trans. Math. Softw.}, 33 (2007), 1.
doi: 10.1145/1268776.1268779. |
[2] |
A. Bonito, J. M. Cascón, P. Morin and R. H. Nochetto, AFEM for geometric PDE: The Laplace-Beltrami operator,, in \emph{Analysis and Numerics of Partial Differential Equations}, (2013), 257.
doi: 10.1007/978-88-470-2592-9_15. |
[3] |
A. Bonito and R. H. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method,, \emph{SIAM J. Numer. Anal.}, 48 (2010), 734.
doi: 10.1137/08072838X. |
[4] |
A. Bonito and J. E. Pasciak, Convergence analysis of variational and non-variational multigrid algorithms for the Laplace-Beltrami operator,, \emph{Math. Comp.}, 81 (2012), 1263.
doi: 10.1090/S0025-5718-2011-02551-2. |
[5] |
A. Bonito and M. S. Pauletti, The step-38 tutorial progam: The laplace-beltrami operator,, \emph{http://www.dealii.org.}, (). Google Scholar |
[6] |
S. Y. Cheng, Eigenfunctions and nodal sets,, \emph{Comment. Math. Helv.}, 51 (1976), 43.
|
[7] |
G. Dziuk, An algorithm for evolutionary surfaces,, \emph{Numer. Math.}, 58 (1991), 603.
doi: 10.1007/BF01385643. |
[8] |
F. J. Foss, II, R. Glowinski and R. H. W. Hoppe, On the numerical solution of a semilinear elliptic eigenproblem of Lane-Emden type. I. Problem formulation and description of the algorithms,, \emph{J. Numer. Math.}, 15 (2007), 181.
doi: 10.1515/jnma.2007.009. |
[9] |
F. J. Foss, II, R. Glowinski and R. H. W. Hoppe, On the numerical solution of a semilinear elliptic eigenproblem of Lane-Emden type. II. Numerical experiments,, \emph{J. Numer. Math.}, 15 (2007), 277.
doi: 10.1515/jnum.2007.013. |
[10] |
R. Glowinski and D. C. Sorensen, Computing the eigenvalues of the Laplace-Beltrami operator on the surface of a torus: a numerical approach,, in \emph{Partial Differential Equations}, (2008), 225.
doi: 10.1007/978-1-4020-8758-5_12. |
[11] |
V. Hernandez, J. E. Roman and V. Vicente, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,, \emph{ACM Trans. Math. Software}, 31 (2005), 351.
doi: 10.1145/1089014.1089019. |
[12] |
R. Lai, Y. Shi, I. Dinov, T. F. Chan and A. W. Toga, Laplace-Beltrami nodal counts: a new signature for 3D shape analysis,, in \emph{2009 IEEE International symposium on biomedical imaging: From nano to macro, (2009), 694. Google Scholar |
[13] |
R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK Users' Guide, volume 6 of Software, Environments, and Tools,, Society for Industrial and Applied Mathematics (SIAM), (1998).
doi: 10.1137/1.9780898719628. |
[14] |
K. Uhlenbeck, Generic properties of eigenfunctions,, \emph{Amer. J. Math.}, 98 (1976), 1059.
|
[1] |
Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040 |
[2] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[3] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[4] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[5] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[6] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[7] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[8] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[9] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[10] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[11] |
Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127 |
[12] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[13] |
Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143 |
[14] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[15] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[16] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[17] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[18] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 |
[19] |
Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133 |
[20] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]