September  2014, 13(5): 2115-2126. doi: 10.3934/cpaa.2014.13.2115

On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in $R^3$: A computational approach

1. 

Department of Mathematics, Texas A\&M University, College Station, TX 77845, United States

2. 

University of Houston, Department of Mathematics, 4800 Calhoun Rd, Houston, Texas 77204 - 3008

Received  September 2013 Revised  January 2014 Published  June 2014

In this article we investigate, via numerical computations, the intersection properties of the nodal set of the eigenfunctions of the Laplace-Beltrami operator for smooth surfaces in $R^3$ (the nodal set of a continuous function is the set of those points at which the function vanishes). First, we briefly discuss the numerical solution of the eigenvalue/eigenfunction problem for the Laplace-Beltrami operator on bounded surfaces of $R^3$, and then consider some specific surfaces and visualize how the nodal lines intersect (or not) depending of the symmetries verified by the surface. After validating our computational methodology with the surface of a ring torus, we will investigate a simple surface without symmetry and observe that in that case the nodal set of the computed eigenfunctions consists of non intersecting lines, suggesting some conjecture. We observe also that for the above symmetry-free surface, the number of connected components of the nodal set varies non-monotonically with the rank of the associated eigenvalue (assuming that the eigenvalues are ordered by increasing value).
Citation: Andrea Bonito, Roland Glowinski. On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in $R^3$: A computational approach. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2115-2126. doi: 10.3934/cpaa.2014.13.2115
References:
[1]

W. Bangerth, R. Hartmann and G. Kanschat, deal.II-a general purpose object oriented finite element library,, \emph{ACM Trans. Math. Softw.}, 33 (2007), 1.  doi: 10.1145/1268776.1268779.  Google Scholar

[2]

A. Bonito, J. M. Cascón, P. Morin and R. H. Nochetto, AFEM for geometric PDE: The Laplace-Beltrami operator,, in \emph{Analysis and Numerics of Partial Differential Equations}, (2013), 257.  doi: 10.1007/978-88-470-2592-9_15.  Google Scholar

[3]

A. Bonito and R. H. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method,, \emph{SIAM J. Numer. Anal.}, 48 (2010), 734.  doi: 10.1137/08072838X.  Google Scholar

[4]

A. Bonito and J. E. Pasciak, Convergence analysis of variational and non-variational multigrid algorithms for the Laplace-Beltrami operator,, \emph{Math. Comp.}, 81 (2012), 1263.  doi: 10.1090/S0025-5718-2011-02551-2.  Google Scholar

[5]

A. Bonito and M. S. Pauletti, The step-38 tutorial progam: The laplace-beltrami operator,, \emph{http://www.dealii.org.}, ().   Google Scholar

[6]

S. Y. Cheng, Eigenfunctions and nodal sets,, \emph{Comment. Math. Helv.}, 51 (1976), 43.   Google Scholar

[7]

G. Dziuk, An algorithm for evolutionary surfaces,, \emph{Numer. Math.}, 58 (1991), 603.  doi: 10.1007/BF01385643.  Google Scholar

[8]

F. J. Foss, II, R. Glowinski and R. H. W. Hoppe, On the numerical solution of a semilinear elliptic eigenproblem of Lane-Emden type. I. Problem formulation and description of the algorithms,, \emph{J. Numer. Math.}, 15 (2007), 181.  doi: 10.1515/jnma.2007.009.  Google Scholar

[9]

F. J. Foss, II, R. Glowinski and R. H. W. Hoppe, On the numerical solution of a semilinear elliptic eigenproblem of Lane-Emden type. II. Numerical experiments,, \emph{J. Numer. Math.}, 15 (2007), 277.  doi: 10.1515/jnum.2007.013.  Google Scholar

[10]

R. Glowinski and D. C. Sorensen, Computing the eigenvalues of the Laplace-Beltrami operator on the surface of a torus: a numerical approach,, in \emph{Partial Differential Equations}, (2008), 225.  doi: 10.1007/978-1-4020-8758-5_12.  Google Scholar

[11]

V. Hernandez, J. E. Roman and V. Vicente, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,, \emph{ACM Trans. Math. Software}, 31 (2005), 351.  doi: 10.1145/1089014.1089019.  Google Scholar

[12]

R. Lai, Y. Shi, I. Dinov, T. F. Chan and A. W. Toga, Laplace-Beltrami nodal counts: a new signature for 3D shape analysis,, in \emph{2009 IEEE International symposium on biomedical imaging: From nano to macro, (2009), 694.   Google Scholar

[13]

R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK Users' Guide, volume 6 of Software, Environments, and Tools,, Society for Industrial and Applied Mathematics (SIAM), (1998).  doi: 10.1137/1.9780898719628.  Google Scholar

[14]

K. Uhlenbeck, Generic properties of eigenfunctions,, \emph{Amer. J. Math.}, 98 (1976), 1059.   Google Scholar

show all references

References:
[1]

W. Bangerth, R. Hartmann and G. Kanschat, deal.II-a general purpose object oriented finite element library,, \emph{ACM Trans. Math. Softw.}, 33 (2007), 1.  doi: 10.1145/1268776.1268779.  Google Scholar

[2]

A. Bonito, J. M. Cascón, P. Morin and R. H. Nochetto, AFEM for geometric PDE: The Laplace-Beltrami operator,, in \emph{Analysis and Numerics of Partial Differential Equations}, (2013), 257.  doi: 10.1007/978-88-470-2592-9_15.  Google Scholar

[3]

A. Bonito and R. H. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method,, \emph{SIAM J. Numer. Anal.}, 48 (2010), 734.  doi: 10.1137/08072838X.  Google Scholar

[4]

A. Bonito and J. E. Pasciak, Convergence analysis of variational and non-variational multigrid algorithms for the Laplace-Beltrami operator,, \emph{Math. Comp.}, 81 (2012), 1263.  doi: 10.1090/S0025-5718-2011-02551-2.  Google Scholar

[5]

A. Bonito and M. S. Pauletti, The step-38 tutorial progam: The laplace-beltrami operator,, \emph{http://www.dealii.org.}, ().   Google Scholar

[6]

S. Y. Cheng, Eigenfunctions and nodal sets,, \emph{Comment. Math. Helv.}, 51 (1976), 43.   Google Scholar

[7]

G. Dziuk, An algorithm for evolutionary surfaces,, \emph{Numer. Math.}, 58 (1991), 603.  doi: 10.1007/BF01385643.  Google Scholar

[8]

F. J. Foss, II, R. Glowinski and R. H. W. Hoppe, On the numerical solution of a semilinear elliptic eigenproblem of Lane-Emden type. I. Problem formulation and description of the algorithms,, \emph{J. Numer. Math.}, 15 (2007), 181.  doi: 10.1515/jnma.2007.009.  Google Scholar

[9]

F. J. Foss, II, R. Glowinski and R. H. W. Hoppe, On the numerical solution of a semilinear elliptic eigenproblem of Lane-Emden type. II. Numerical experiments,, \emph{J. Numer. Math.}, 15 (2007), 277.  doi: 10.1515/jnum.2007.013.  Google Scholar

[10]

R. Glowinski and D. C. Sorensen, Computing the eigenvalues of the Laplace-Beltrami operator on the surface of a torus: a numerical approach,, in \emph{Partial Differential Equations}, (2008), 225.  doi: 10.1007/978-1-4020-8758-5_12.  Google Scholar

[11]

V. Hernandez, J. E. Roman and V. Vicente, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,, \emph{ACM Trans. Math. Software}, 31 (2005), 351.  doi: 10.1145/1089014.1089019.  Google Scholar

[12]

R. Lai, Y. Shi, I. Dinov, T. F. Chan and A. W. Toga, Laplace-Beltrami nodal counts: a new signature for 3D shape analysis,, in \emph{2009 IEEE International symposium on biomedical imaging: From nano to macro, (2009), 694.   Google Scholar

[13]

R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK Users' Guide, volume 6 of Software, Environments, and Tools,, Society for Industrial and Applied Mathematics (SIAM), (1998).  doi: 10.1137/1.9780898719628.  Google Scholar

[14]

K. Uhlenbeck, Generic properties of eigenfunctions,, \emph{Amer. J. Math.}, 98 (1976), 1059.   Google Scholar

[1]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[2]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[3]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[4]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[5]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[6]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[7]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[8]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[9]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[10]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[11]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[12]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[13]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[14]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[15]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[16]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[17]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[18]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[19]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[20]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]