November  2014, 13(6): 2141-2154. doi: 10.3934/cpaa.2014.13.2141

Nonlinear Biharmonic Problems with Singular Potentials

1. 

Departamento de Matematica, Universidade Federal de Minas Gerais, 31270-010 Belo Horizonte-MG, Brazil

2. 

Departamento de Física e Matemática, Universidade Federal Fluminense, Campus de Rio das Ostras, Rio das Ostras, RJ 28890-000, Brazil

3. 

Departmento de Matemática, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG

Received  November 2011 Revised  May 2014 Published  July 2014

We deal with the problem \begin{eqnarray} \Delta^2 u +V(|x|)u = f(u), u\in D^{2,2}(R^N) \end{eqnarray} where $\Delta^2$ is biharmonic operator and the potential $V > 0 $ is measurable, singular at the origin and may also have a continuous set of singularities. The nonlinearity is continuous and has a super-linear power-like behaviour; both sub-critical and super-critical cases are considered. We prove the existence of nontrivial radial solutions. If $f$ is odd, we show that the problem has infinitely many radial solutions.
Citation: Paulo Cesar Carrião, R. Demarque, Olímpio H. Miyagaki. Nonlinear Biharmonic Problems with Singular Potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2141-2154. doi: 10.3934/cpaa.2014.13.2141
References:
[1]

C. O. Alves and J. M. do Ó, Positive solutions of a fourth-order semilinear problem involving critical growth,, \emph{Adv. Nonlinear Stud.}, 2 (2002), 437.   Google Scholar

[2]

C. O. Alves, J. M. do Ó and O. H. Miyagaki, Nontrivial solutions for a class of semilinear biharmonic problems involving critical exponents,, \emph{Nonlinear Anal.}, 46 (2001), 121.  doi: 10.1016/S0362-546X(99)00449-6.  Google Scholar

[3]

C. O. Alves, J. M. do Ó and O. H. Miyagaki, On a class singular biharmonic problems involving critical exponent,, \emph{J. Math. Anal. Appl.}, 277 (2003), 12.  doi: 10.1016/S0022-247X(02)00283-4.  Google Scholar

[4]

M. Badiale and S. Rolando, A note on nonlinear elliptic problems with singular potentials,, \emph{Rend. Lincei Mat. Appl.}, 17 (2006), 1.  doi: 10.4171/RLM/450.  Google Scholar

[5]

Bernis, J. García Azorero and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order,, \emph{Adv. Differential Equations}, 1 (1996), 219.   Google Scholar

[6]

J. Chabrowski and J. M. do Ó, On some fourth order semilinear elliptic problems in $\R^N$,, \emph{Nonlinear Anal.}, 49 (2002), 861.  doi: 10.1016/S0362-546X(01)00144-4.  Google Scholar

[7]

F. Gazzola, H.-Ch. Grunau and G. Sweers, Polyharmonic Boundary Value Problems,, Springer, (2010).  doi: 10.1007/978-3-642-12245-3.  Google Scholar

[8]

E. S. Noussair, C. A. Swanson and J. Yang, Transcritical Biharmonic Equations in $\R^N$,, \emph{Funkcialaj Ekvacioj}, 35 (1992), 533.   Google Scholar

[9]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,, CBMS Regional Conference Series in Mathematics 65, (1986).   Google Scholar

[10]

W. A. Strauss, Existence of solitary waves in higher dimensions,, Comm. Math. Phys. \textbf{55} (1977), 55 (1977), 149.   Google Scholar

[11]

J. Su and R. Tian, Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations,, \emph{Comm. on Pure and Appl. Anal.}, 9 (2010), 885.  doi: 10.3934/cpaa.2010.9.885.  Google Scholar

[12]

J. Su, Z-Q. Wang and M. Willem, Nonlinear Schödinger equations with unbounded and decaying radial potentials,, \emph{Commun. Contemp. Math.}, 9 (2007), 571.  doi: 10.1142/S021919970700254X.  Google Scholar

[13]

J. Su, Z-Q. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials,, \emph{J. Differential Equations}, 238 (2007), 201.  doi: 10.1016/j.jde.2007.03.018.  Google Scholar

[14]

M. Struwe, Variational Methods,, Springer-Verlag, (2008).   Google Scholar

[15]

Y. Wang and Y. Shen, Multiple and sign-changing solutions for a class of semilinear biharmonic equation,, \emph{J. Differential Equations}, 246 (2009), 3109.  doi: 10.1016/j.jde.2009.02.016.  Google Scholar

[16]

Y. Wang and Y. Shen, Nonlinear biharmonic equations with Hardy potential and critical parameter,, \emph{J. Math. Anal. Appl.}, 355 (2009), 649.  doi: 10.1016/j.jmaa.2009.01.076.  Google Scholar

[17]

M. Willem, Minimax theorem,, PNLDE 24, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[18]

H. Xiong and Y. T. Shen, Nonlinear biharmonic equations with critical potential,, \emph{Acta Math. Sin. (Engl. Ser.)}, 21 (2005), 1285.  doi: 10.1007/s10114-004-0502-4.  Google Scholar

show all references

References:
[1]

C. O. Alves and J. M. do Ó, Positive solutions of a fourth-order semilinear problem involving critical growth,, \emph{Adv. Nonlinear Stud.}, 2 (2002), 437.   Google Scholar

[2]

C. O. Alves, J. M. do Ó and O. H. Miyagaki, Nontrivial solutions for a class of semilinear biharmonic problems involving critical exponents,, \emph{Nonlinear Anal.}, 46 (2001), 121.  doi: 10.1016/S0362-546X(99)00449-6.  Google Scholar

[3]

C. O. Alves, J. M. do Ó and O. H. Miyagaki, On a class singular biharmonic problems involving critical exponent,, \emph{J. Math. Anal. Appl.}, 277 (2003), 12.  doi: 10.1016/S0022-247X(02)00283-4.  Google Scholar

[4]

M. Badiale and S. Rolando, A note on nonlinear elliptic problems with singular potentials,, \emph{Rend. Lincei Mat. Appl.}, 17 (2006), 1.  doi: 10.4171/RLM/450.  Google Scholar

[5]

Bernis, J. García Azorero and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order,, \emph{Adv. Differential Equations}, 1 (1996), 219.   Google Scholar

[6]

J. Chabrowski and J. M. do Ó, On some fourth order semilinear elliptic problems in $\R^N$,, \emph{Nonlinear Anal.}, 49 (2002), 861.  doi: 10.1016/S0362-546X(01)00144-4.  Google Scholar

[7]

F. Gazzola, H.-Ch. Grunau and G. Sweers, Polyharmonic Boundary Value Problems,, Springer, (2010).  doi: 10.1007/978-3-642-12245-3.  Google Scholar

[8]

E. S. Noussair, C. A. Swanson and J. Yang, Transcritical Biharmonic Equations in $\R^N$,, \emph{Funkcialaj Ekvacioj}, 35 (1992), 533.   Google Scholar

[9]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,, CBMS Regional Conference Series in Mathematics 65, (1986).   Google Scholar

[10]

W. A. Strauss, Existence of solitary waves in higher dimensions,, Comm. Math. Phys. \textbf{55} (1977), 55 (1977), 149.   Google Scholar

[11]

J. Su and R. Tian, Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations,, \emph{Comm. on Pure and Appl. Anal.}, 9 (2010), 885.  doi: 10.3934/cpaa.2010.9.885.  Google Scholar

[12]

J. Su, Z-Q. Wang and M. Willem, Nonlinear Schödinger equations with unbounded and decaying radial potentials,, \emph{Commun. Contemp. Math.}, 9 (2007), 571.  doi: 10.1142/S021919970700254X.  Google Scholar

[13]

J. Su, Z-Q. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials,, \emph{J. Differential Equations}, 238 (2007), 201.  doi: 10.1016/j.jde.2007.03.018.  Google Scholar

[14]

M. Struwe, Variational Methods,, Springer-Verlag, (2008).   Google Scholar

[15]

Y. Wang and Y. Shen, Multiple and sign-changing solutions for a class of semilinear biharmonic equation,, \emph{J. Differential Equations}, 246 (2009), 3109.  doi: 10.1016/j.jde.2009.02.016.  Google Scholar

[16]

Y. Wang and Y. Shen, Nonlinear biharmonic equations with Hardy potential and critical parameter,, \emph{J. Math. Anal. Appl.}, 355 (2009), 649.  doi: 10.1016/j.jmaa.2009.01.076.  Google Scholar

[17]

M. Willem, Minimax theorem,, PNLDE 24, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[18]

H. Xiong and Y. T. Shen, Nonlinear biharmonic equations with critical potential,, \emph{Acta Math. Sin. (Engl. Ser.)}, 21 (2005), 1285.  doi: 10.1007/s10114-004-0502-4.  Google Scholar

[1]

Julián López-Gómez. Uniqueness of radially symmetric large solutions. Conference Publications, 2007, 2007 (Special) : 677-686. doi: 10.3934/proc.2007.2007.677

[2]

Thomas I. Vogel. Comments on radially symmetric liquid bridges with inflected profiles. Conference Publications, 2005, 2005 (Special) : 862-867. doi: 10.3934/proc.2005.2005.862

[3]

Teemu Tyni, Valery Serov. Scattering problems for perturbations of the multidimensional biharmonic operator. Inverse Problems & Imaging, 2018, 12 (1) : 205-227. doi: 10.3934/ipi.2018008

[4]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[5]

Chiara Corsato, Colette De Coster, Pierpaolo Omari. Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Conference Publications, 2015, 2015 (special) : 297-303. doi: 10.3934/proc.2015.0297

[6]

Harunori Monobe. Behavior of radially symmetric solutions for a free boundary problem related to cell motility. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 989-997. doi: 10.3934/dcdss.2015.8.989

[7]

István Balázs, Jan Bouwe van den Berg, Julien Courtois, János Dudás, Jean-Philippe Lessard, Anett Vörös-Kiss, JF Williams, Xi Yuan Yin. Computer-assisted proofs for radially symmetric solutions of PDEs. Journal of Computational Dynamics, 2018, 5 (1&2) : 61-80. doi: 10.3934/jcd.2018003

[8]

Guillaume Warnault. Regularity of the extremal solution for a biharmonic problem with general nonlinearity. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1709-1723. doi: 10.3934/cpaa.2009.8.1709

[9]

Tran Ngoc Thach, Nguyen Huy Tuan, Donal O'Regan. Regularized solution for a biharmonic equation with discrete data. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020008

[10]

Zhongliang Wang. Nonradial positive solutions for a biharmonic critical growth problem. Communications on Pure & Applied Analysis, 2012, 11 (2) : 517-545. doi: 10.3934/cpaa.2012.11.517

[11]

Filippo Gazzola. On the moments of solutions to linear parabolic equations involving the biharmonic operator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3583-3597. doi: 10.3934/dcds.2013.33.3583

[12]

Pasquale Candito, Giovanni Molica Bisci. Multiple solutions for a Navier boundary value problem involving the $p$--biharmonic operator. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 741-751. doi: 10.3934/dcdss.2012.5.741

[13]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[14]

Zifei Shen, Fashun Gao, Minbo Yang. On critical Choquard equation with potential well. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3567-3593. doi: 10.3934/dcds.2018151

[15]

Tomoyuki Miyaji, Yoshio Tsutsumi. Steady-state mode interactions of radially symmetric modes for the Lugiato-Lefever equation on a disk. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1633-1650. doi: 10.3934/cpaa.2018078

[16]

Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505

[17]

Tamara Fastovska. Long-time behaviour of a radially symmetric fluid-shell interaction system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1315-1348. doi: 10.3934/dcds.2018054

[18]

Bryce Weaver. Growth rate of periodic orbits for geodesic flows over surfaces with radially symmetric focusing caps. Journal of Modern Dynamics, 2014, 8 (2) : 139-176. doi: 10.3934/jmd.2014.8.139

[19]

Yukio Kan-On. Structure on the set of radially symmetric positive stationary solutions for a competition-diffusion system. Conference Publications, 2013, 2013 (special) : 427-436. doi: 10.3934/proc.2013.2013.427

[20]

Federica Sani. A biharmonic equation in $\mathbb{R}^4$ involving nonlinearities with critical exponential growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 405-428. doi: 10.3934/cpaa.2013.12.405

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (7)

[Back to Top]