\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Complex Powers of the Laplacian on Affine Nested Fractals as Calderón-Zygmund operators

Abstract / Introduction Related Papers Cited by
  • We give the first natural examples of Calderón-Zygmund operators in the theory of analysis on post-critically finite self-similar fractals. This is achieved by showing that the purely imaginary Riesz and Bessel potentials on nested fractals with $3$ or more boundary points are of this type. It follows that these operators are bounded on $L^{p}$, $1 < p < \infty$ and satisfy weak $1$-$1$ bounds. The analysis may be extended to infinite blow-ups of these fractals, and to product spaces based on the fractal or its blow-up.
    Mathematics Subject Classification: Primary: 28A80, 46F12; Secondary: 42C99, 81Q10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Martin T. Barlow and Edwin A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields, 79 (1988), 543-623.

    [2]

    Oren Ben-Bassat, Robert S. Strichartz and Alexander Teplyaev, What is not in the domain of the Laplacian on Sierpinski gasket type fractals, J. Funct. Anal., 166 (1999), 197-217.

    [3]

    E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, Cambridge, 1990.

    [4]

    Pat J. Fitzsimmons, Ben M. Hambly and Takashi Kumagai, Transition density estimates for Brownian motion on affine nested fractals, Comm. Math. Phys., 165 (1994), 595-620.

    [5]

    Gerald B. Folland, Real Analysis, Pure and Applied Mathematics, New York, Second edition, Modern techniques and their applications, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1999.

    [6]

    M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket, Potential Anal., 1 (1992), 1-35.doi: 10.1007/BF00249784.

    [7]

    B. M. Hambly and T. Kumagai, Transition density estimates for diffusion processes on post critically finite self-similar fractals, Proc. London Math. Soc., 78 (1999), 431-458.

    [8]

    B. M. Hambly and T. Kumagai, Diffusion processes on fractal fields: heat kernel estimates and large deviations, Probab. Theory Related Fields, 127 (2003), 305-352.

    [9]

    Jiaxin Hu and Martina Zähle, Potential spaces on fractals, Studia Math., 170 (2005), 259-281.doi: 10.4064/sm170-3-4.

    [10]

    Jiaxin Hu and Martina Zähle, Generalized Bessel and Riesz potentials on metric measure spaces, Potential Anal., 30 (2009), 315-340.doi: 10.1007/s11118-009-9117-9.

    [11]

    John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.doi: 10.1512/iumj.1981.30.30055.

    [12]

    Jun Kigami, Analysis on Fractals, Cambridge Tracts in Mathematics, 143, Cambridge, 2001.

    [13]

    Jun Kigami, Harmonic analysis for resistance forms, J. Funct. Anal., 204 (2003), 399-444.doi: 10.1016/S0022-1236(02)00149-0.

    [14]

    Tom Lindstrøm, Brownian motion on nested fractals, Mem. Amer. Math. Soc., 83 (1990), 420.

    [15]

    Jonathan Needleman, Robert S. Strichartz, Alexander Teplyaev and Po-Lam Yung, Calculus on the Sierpinski gasket. I. Polynomials, exponentials and power series, J. Funct. Anal., 215 (2004), 290-340.doi: 10.1016/j.jfa.2003.11.011.

    [16]

    Luke G. Rogers, Estimates for the resolvent kernel of the Laplacian on p.c.f. self-similar fractals and blowups, Trans. Amer. Math. Soc., 364 (2012), 1633-1685.doi: 10.1090/S0002-9947-2011-05551-0.

    [17]

    Christophe Sabot, Pure point spectrum for the Laplacian on unbounded nested fractals, J. Funct. Anal., 173 (2000), 497-524.

    [18]

    R. T. Seeley, Complex powers of an elliptic operator, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), 288-307, Amer. Math. Soc., Providence, R.I., 1967.

    [19]

    R. T. Seeley, Analytic extension of the trace associated with elliptic boundary problems, Amer. J. Math., 91 (1969), 963-983.

    [20]

    Adam Sikora, Multivariable spectral multipliers and analysis of quasielliptic operators on fractals, Indiana Univ. Math. J., 58 (2009), 317-334.doi: 10.1512/iumj.2009.58.3745.

    [21]

    Elias M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.

    [22]

    Elias M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J., 1970.

    [23]

    Elias M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ, 1993.

    [24]

    Elias M. Stein and Rami Shakarchi, Complex Analysis, Princeton Lectures in Analysis, II, Princeton University Press, Princeton, NJ, 2003.

    [25]

    Robert S. Strichartz, Fractals in the large, Canad. J. Math., 50 (1998), 638-657.

    [26]

    Robert S. Strichartz, Fractafolds based on the Sierpiński gasket and their spectra, Trans. Amer. Math. Soc., 355 (2003), 4019-4043.

    [27]

    Robert S. Strichartz, Function spaces on fractals, J. Funct. Anal., 198 (2003), 43-83.

    [28]

    Robert S. Strichartz, Analysis on products of fractals, Trans. Amer. Math. Soc., 357 (2005), 571-615.

    [29]

    Robert S. Strichartz, Differential Equations on Fractals, A tutorial, Princeton University Press, Princeton, NJ, 2006.

    [30]

    Robert S. Strichartz, A fractal quantum mechanical model with Coulomb potential, Commun. Pure Appl. Anal., 8 (2009), 743-755.doi: 10.3934/cpaa.2009.8.743.

    [31]

    Michael E. Taylor, Pseudodifferential Operators, Princeton Mathematical Series, 34, Princeton University Press, Princeton, N.J., 1981.

    [32]

    Alexander Teplyaev, Spectral analysis on infinite Sierpiński gaskets, J. Funct. Anal., 159 (1998), 537-567.

    [33]

    Xuan Thinh Duong, El Maati Ouhabaz and Adam Sikora, Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal., 196 (2002), 443-485.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return