Advanced Search
Article Contents
Article Contents

Complex Powers of the Laplacian on Affine Nested Fractals as Calderón-Zygmund operators

Abstract Related Papers Cited by
  • We give the first natural examples of Calderón-Zygmund operators in the theory of analysis on post-critically finite self-similar fractals. This is achieved by showing that the purely imaginary Riesz and Bessel potentials on nested fractals with $3$ or more boundary points are of this type. It follows that these operators are bounded on $L^{p}$, $1 < p < \infty$ and satisfy weak $1$-$1$ bounds. The analysis may be extended to infinite blow-ups of these fractals, and to product spaces based on the fractal or its blow-up.
    Mathematics Subject Classification: Primary: 28A80, 46F12; Secondary: 42C99, 81Q10.


    \begin{equation} \\ \end{equation}
  • [1]

    Martin T. Barlow and Edwin A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields, 79 (1988), 543-623.


    Oren Ben-Bassat, Robert S. Strichartz and Alexander Teplyaev, What is not in the domain of the Laplacian on Sierpinski gasket type fractals, J. Funct. Anal., 166 (1999), 197-217.


    E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, Cambridge, 1990.


    Pat J. Fitzsimmons, Ben M. Hambly and Takashi Kumagai, Transition density estimates for Brownian motion on affine nested fractals, Comm. Math. Phys., 165 (1994), 595-620.


    Gerald B. Folland, Real Analysis, Pure and Applied Mathematics, New York, Second edition, Modern techniques and their applications, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1999.


    M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket, Potential Anal., 1 (1992), 1-35.doi: 10.1007/BF00249784.


    B. M. Hambly and T. Kumagai, Transition density estimates for diffusion processes on post critically finite self-similar fractals, Proc. London Math. Soc., 78 (1999), 431-458.


    B. M. Hambly and T. Kumagai, Diffusion processes on fractal fields: heat kernel estimates and large deviations, Probab. Theory Related Fields, 127 (2003), 305-352.


    Jiaxin Hu and Martina Zähle, Potential spaces on fractals, Studia Math., 170 (2005), 259-281.doi: 10.4064/sm170-3-4.


    Jiaxin Hu and Martina Zähle, Generalized Bessel and Riesz potentials on metric measure spaces, Potential Anal., 30 (2009), 315-340.doi: 10.1007/s11118-009-9117-9.


    John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.doi: 10.1512/iumj.1981.30.30055.


    Jun Kigami, Analysis on Fractals, Cambridge Tracts in Mathematics, 143, Cambridge, 2001.


    Jun Kigami, Harmonic analysis for resistance forms, J. Funct. Anal., 204 (2003), 399-444.doi: 10.1016/S0022-1236(02)00149-0.


    Tom Lindstrøm, Brownian motion on nested fractals, Mem. Amer. Math. Soc., 83 (1990), 420.


    Jonathan Needleman, Robert S. Strichartz, Alexander Teplyaev and Po-Lam Yung, Calculus on the Sierpinski gasket. I. Polynomials, exponentials and power series, J. Funct. Anal., 215 (2004), 290-340.doi: 10.1016/j.jfa.2003.11.011.


    Luke G. Rogers, Estimates for the resolvent kernel of the Laplacian on p.c.f. self-similar fractals and blowups, Trans. Amer. Math. Soc., 364 (2012), 1633-1685.doi: 10.1090/S0002-9947-2011-05551-0.


    Christophe Sabot, Pure point spectrum for the Laplacian on unbounded nested fractals, J. Funct. Anal., 173 (2000), 497-524.


    R. T. Seeley, Complex powers of an elliptic operator, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), 288-307, Amer. Math. Soc., Providence, R.I., 1967.


    R. T. Seeley, Analytic extension of the trace associated with elliptic boundary problems, Amer. J. Math., 91 (1969), 963-983.


    Adam Sikora, Multivariable spectral multipliers and analysis of quasielliptic operators on fractals, Indiana Univ. Math. J., 58 (2009), 317-334.doi: 10.1512/iumj.2009.58.3745.


    Elias M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.


    Elias M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J., 1970.


    Elias M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ, 1993.


    Elias M. Stein and Rami Shakarchi, Complex Analysis, Princeton Lectures in Analysis, II, Princeton University Press, Princeton, NJ, 2003.


    Robert S. Strichartz, Fractals in the large, Canad. J. Math., 50 (1998), 638-657.


    Robert S. Strichartz, Fractafolds based on the Sierpiński gasket and their spectra, Trans. Amer. Math. Soc., 355 (2003), 4019-4043.


    Robert S. Strichartz, Function spaces on fractals, J. Funct. Anal., 198 (2003), 43-83.


    Robert S. Strichartz, Analysis on products of fractals, Trans. Amer. Math. Soc., 357 (2005), 571-615.


    Robert S. Strichartz, Differential Equations on Fractals, A tutorial, Princeton University Press, Princeton, NJ, 2006.


    Robert S. Strichartz, A fractal quantum mechanical model with Coulomb potential, Commun. Pure Appl. Anal., 8 (2009), 743-755.doi: 10.3934/cpaa.2009.8.743.


    Michael E. Taylor, Pseudodifferential Operators, Princeton Mathematical Series, 34, Princeton University Press, Princeton, N.J., 1981.


    Alexander Teplyaev, Spectral analysis on infinite Sierpiński gaskets, J. Funct. Anal., 159 (1998), 537-567.


    Xuan Thinh Duong, El Maati Ouhabaz and Adam Sikora, Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal., 196 (2002), 443-485.

  • 加载中

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint