Citation: |
[1] |
T. Aktosun, F. Demontis, and C. van der Mee, Exact solutions to the sine-Gordon equation, Journal of Mathematical Physics, 51 (2010), 1-26. |
[2] |
A. Benabdallah, J. G. Caputo and A. C. Scott, Exponentially tapered josephson flux-flow oscillator, Phy. Rev. B, 54 (1996), 16139. |
[3] |
A. Benabdallah, J. G. Caputo and A. C. Scott, Laminar phase flow for an exponentially tapered josephson oscillator, J. Apl. Phys., 588 (2000), 3527. |
[4] |
S. Bondarenko and Nakagawa, SQUID-based magnetic microscope, in "Smart Materials for Ranking Systems," J. France et al (edition), Springer (2006), 195-201. |
[5] |
T. L. Boyadjiev, E. G. Semerdjieva and Yu. M. Shukrinov, Common features of vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities, Physica C, 460-462 (2007), 1317-1318. |
[6] |
G. Carapella, N. Martucciello and G. Costabile, Experimental investigation of flux motion in exponentially shaped Josephson junctions, PHYS REV B, 66 (2002), 134531. |
[7] |
J. Clarke, "SQUIDs for Everything," Nature Materials, 10 (2011). |
[8] |
J. Clarke, SQUIDs: Then and Now, chapter in BCS: 50 Years (eds. Leon N Cooper and Dmitri Feldman) World Scientific Publishing Co. Pte. Ltd., Singapore (2010). |
[9] |
S. A. Cybart et al., Dynes Series array of incommensurate superconducting quantum interference devices, Appl. Phys Lett, 93 (2008), 1-3. |
[10] |
A. D'Anna, M. De Angelis and G. Fiore, Existence and uniqueness for some 3rd order dissipative problems with various boundary conditions, Acta Appl. Math., 122 (2012), 255-267. |
[11] |
M. Dehghan and A. Shokri, A numerical method for solution of the two dimensional sine- Gordon equation using the radial basis functions, Mat Comp in Simulation, 79 (2008), 700-715. |
[12] |
M. De Angelis, On a model of superconductivity and biology, Advances and Applications in Mathematical Sciences, 7 (2010), 41-50. |
[13] |
M. De Angelis, Asymptotic analysis for the strip problem related to a parabolic third-order operator, Applied Mathematics Letters, 14 (2001), 425-430. |
[14] |
M. De Angelis, A priori estimates for excitable models, Meccanica (2013).doi: 10.1007/s11012-013-9763-2. |
[15] |
M. De Angelis, On exponentially shaped Josephson junctions, Acta appl. Math, 122 (2012), 179-189 |
[16] |
M. De Angelis, On a parabolic operator of dissipative systems, submitted to Acta appl. Math, |
[17] |
M. De Angelis and G. Fiore, Existence and uniqueness of solutions of a class of third order dissipative problems with various boundary conditions describing the Josephson effect, J. Math. Anal. Appl., 404 (2013), 477-490.doi: 10.1016/j.jmaa.2013.03.029. |
[18] |
M. De Angelis, A. Maio and E. Mazziotti, Existence and uniqueness results for a class of non linear models, in "Mathematical Physics Models and Engineering Sciences" (ed. Liguori), Italy, (2008), 191-202. |
[19] |
M. De Angelis and E. Mazziotti, Non linear travelling waves with diffusion, Rend. Acc. Sc. Fis. Mat. Napoli, 73 (2006), 23-36. |
[20] |
De Angelis, A. M. Monte and P. M. Renno, On fast and slow times in models with diffusion, Math Models and Methods in Applied Sciences, 12 (2002), 1741-1749. |
[21] |
M. De Angelis and P. Renno, Asymptotic effects of boundary perturbations in excitable systems, (2013), submitted to Discrete and Continuous Dynamical Systems - B. Available from: http://arxiv.org/pdf/1304.3891v1.pdf |
[22] |
M. De Angelis and P. Renno, Existence, uniqueness and a priori estimates for a non linear integro-differential equation, Ric Mat, 57 (2008), 95-109. |
[23] |
De Angelis and P. M. Renno, Diffusion and wave behaviour in linear Voigt model, C. R. Mecanique, 330 (2002), 21-26 |
[24] |
Gutman S. Junhohg Ha, Identification problem for damped sine Gordon equation with point sources, J. Math. Anal. Appl., 375 (2011), 648-666.doi: 10.1016/j.jmaa.2010.10.006. |
[25] |
E. M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting," The MIT press, England, 2007. |
[26] |
M. Jaworski, "Fluxon Dynamics in Exponentially Shaped Josephson Junction," Phy. rev. B, 71 (2005), 1-6. |
[27] |
M. Jaworski, Exponentially tapered Josephson junction: some analytic results, Theor and Math Phys, 144 (2005), 1176-1180. |
[28] |
J. McCall and Lindsa, Superconductor cables: Advanced capabilities for the smart grid, Utility Automation Engineering TD, 13 (2008), 54. |
[29] |
J. D. Murray, "Mathematical Biology. I. An Introduction," Springer-Verlag, N.Y, 2002. |
[30] |
S. Rionero, Asymptotic behaviour of solutions to a nonlinear third order P.D.E modeling physical phenomena, Boll Unione Mat Ital, 9 (2012), 451-468. |
[31] |
H. Rogalla and P. H. Kes, "100 Years of Superconductivity," CRC Press, (2012). |
[32] |
A.C. Scott, "The Nonlinear Universe: Chaos, Emergence, Life," Springer-Verlag, 2007. |
[33] |
A.C. Scott, "Neuroscience A mathematical Primer," Springer-Verlag, 2002. |