
Previous Article
The existence and blowup criterion of liquid crystals system in critical Besov space
 CPAA Home
 This Issue

Next Article
A pair of positive solutions for $(p,q)$equations with combined nonlinearities
Diffusion effects in a superconductive model
1.  Univ. of Naples Federico II, Dept of Math and Appl, Via Claudio n. 21, 80125 Naples, Italy 
2.  Univ. of Naples Federico II, I.N.F.N., Sez. of Naples, Complesso MSA, V. Cintia, 80126 Naples, Italy 
References:
[1] 
T. Aktosun, F. Demontis, and C. van der Mee, Exact solutions to the sineGordon equation, Journal of Mathematical Physics, 51 (2010), 126. 
[2] 
A. Benabdallah, J. G. Caputo and A. C. Scott, Exponentially tapered josephson fluxflow oscillator, Phy. Rev. B, 54 (1996), 16139. 
[3] 
A. Benabdallah, J. G. Caputo and A. C. Scott, Laminar phase flow for an exponentially tapered josephson oscillator, J. Apl. Phys., 588 (2000), 3527. 
[4] 
S. Bondarenko and Nakagawa, SQUIDbased magnetic microscope, in "Smart Materials for Ranking Systems," J. France et al (edition), Springer (2006), 195201. 
[5] 
T. L. Boyadjiev, E. G. Semerdjieva and Yu. M. Shukrinov, Common features of vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities, Physica C, 460462 (2007), 13171318. 
[6] 
G. Carapella, N. Martucciello and G. Costabile, Experimental investigation of flux motion in exponentially shaped Josephson junctions, PHYS REV B, 66 (2002), 134531. 
[7] 
J. Clarke, "SQUIDs for Everything," Nature Materials, 10 (2011). 
[8] 
J. Clarke, SQUIDs: Then and Now, chapter in BCS: 50 Years (eds. Leon N Cooper and Dmitri Feldman) World Scientific Publishing Co. Pte. Ltd., Singapore (2010). 
[9] 
S. A. Cybart et al., Dynes Series array of incommensurate superconducting quantum interference devices, Appl. Phys Lett, 93 (2008), 13. 
[10] 
A. D'Anna, M. De Angelis and G. Fiore, Existence and uniqueness for some 3rd order dissipative problems with various boundary conditions, Acta Appl. Math., 122 (2012), 255267. 
[11] 
M. Dehghan and A. Shokri, A numerical method for solution of the two dimensional sine Gordon equation using the radial basis functions, Mat Comp in Simulation, 79 (2008), 700715. 
[12] 
M. De Angelis, On a model of superconductivity and biology, Advances and Applications in Mathematical Sciences, 7 (2010), 4150. 
[13] 
M. De Angelis, Asymptotic analysis for the strip problem related to a parabolic thirdorder operator, Applied Mathematics Letters, 14 (2001), 425430. 
[14] 
M. De Angelis, A priori estimates for excitable models, Meccanica (2013). doi: 10.1007/s1101201397632. 
[15] 
M. De Angelis, On exponentially shaped Josephson junctions, Acta appl. Math, 122 (2012), 179189 
[16] 
M. De Angelis, On a parabolic operator of dissipative systems,, submitted to Acta appl. Math, (). 
[17] 
M. De Angelis and G. Fiore, Existence and uniqueness of solutions of a class of third order dissipative problems with various boundary conditions describing the Josephson effect, J. Math. Anal. Appl., 404 (2013), 477490. doi: 10.1016/j.jmaa.2013.03.029. 
[18] 
M. De Angelis, A. Maio and E. Mazziotti, Existence and uniqueness results for a class of non linear models, in "Mathematical Physics Models and Engineering Sciences" (ed. Liguori), Italy, (2008), 191202. 
[19] 
M. De Angelis and E. Mazziotti, Non linear travelling waves with diffusion, Rend. Acc. Sc. Fis. Mat. Napoli, 73 (2006), 2336. 
[20] 
De Angelis, A. M. Monte and P. M. Renno, On fast and slow times in models with diffusion, Math Models and Methods in Applied Sciences, 12 (2002), 17411749. 
[21] 
M. De Angelis and P. Renno, Asymptotic effects of boundary perturbations in excitable systems, (2013),, submitted to Discrete and Continuous Dynamical Systems  B. Available from: \url{http://arxiv.org/pdf/1304.3891v1.pdf}, (). 
[22] 
M. De Angelis and P. Renno, Existence, uniqueness and a priori estimates for a non linear integrodifferential equation, Ric Mat, 57 (2008), 95109. 
[23] 
De Angelis and P. M. Renno, Diffusion and wave behaviour in linear Voigt model, C. R. Mecanique, 330 (2002), 2126 
[24] 
Gutman S. Junhohg Ha, Identification problem for damped sine Gordon equation with point sources, J. Math. Anal. Appl., 375 (2011), 648666. doi: 10.1016/j.jmaa.2010.10.006. 
[25] 
E. M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting," The MIT press, England, 2007. 
[26] 
M. Jaworski, "Fluxon Dynamics in Exponentially Shaped Josephson Junction," Phy. rev. B, 71 (2005), 16. 
[27] 
M. Jaworski, Exponentially tapered Josephson junction: some analytic results, Theor and Math Phys, 144 (2005), 11761180. 
[28] 
J. McCall and Lindsa, Superconductor cables: Advanced capabilities for the smart grid, Utility Automation Engineering TD, 13 (2008), 54. 
[29] 
J. D. Murray, "Mathematical Biology. I. An Introduction," SpringerVerlag, N.Y, 2002. 
[30] 
S. Rionero, Asymptotic behaviour of solutions to a nonlinear third order P.D.E modeling physical phenomena, Boll Unione Mat Ital, 9 (2012), 451468. 
[31] 
H. Rogalla and P. H. Kes, "100 Years of Superconductivity," CRC Press, (2012). 
[32] 
A.C. Scott, "The Nonlinear Universe: Chaos, Emergence, Life," SpringerVerlag, 2007. 
[33] 
A.C. Scott, "Neuroscience A mathematical Primer," SpringerVerlag, 2002. 
show all references
References:
[1] 
T. Aktosun, F. Demontis, and C. van der Mee, Exact solutions to the sineGordon equation, Journal of Mathematical Physics, 51 (2010), 126. 
[2] 
A. Benabdallah, J. G. Caputo and A. C. Scott, Exponentially tapered josephson fluxflow oscillator, Phy. Rev. B, 54 (1996), 16139. 
[3] 
A. Benabdallah, J. G. Caputo and A. C. Scott, Laminar phase flow for an exponentially tapered josephson oscillator, J. Apl. Phys., 588 (2000), 3527. 
[4] 
S. Bondarenko and Nakagawa, SQUIDbased magnetic microscope, in "Smart Materials for Ranking Systems," J. France et al (edition), Springer (2006), 195201. 
[5] 
T. L. Boyadjiev, E. G. Semerdjieva and Yu. M. Shukrinov, Common features of vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities, Physica C, 460462 (2007), 13171318. 
[6] 
G. Carapella, N. Martucciello and G. Costabile, Experimental investigation of flux motion in exponentially shaped Josephson junctions, PHYS REV B, 66 (2002), 134531. 
[7] 
J. Clarke, "SQUIDs for Everything," Nature Materials, 10 (2011). 
[8] 
J. Clarke, SQUIDs: Then and Now, chapter in BCS: 50 Years (eds. Leon N Cooper and Dmitri Feldman) World Scientific Publishing Co. Pte. Ltd., Singapore (2010). 
[9] 
S. A. Cybart et al., Dynes Series array of incommensurate superconducting quantum interference devices, Appl. Phys Lett, 93 (2008), 13. 
[10] 
A. D'Anna, M. De Angelis and G. Fiore, Existence and uniqueness for some 3rd order dissipative problems with various boundary conditions, Acta Appl. Math., 122 (2012), 255267. 
[11] 
M. Dehghan and A. Shokri, A numerical method for solution of the two dimensional sine Gordon equation using the radial basis functions, Mat Comp in Simulation, 79 (2008), 700715. 
[12] 
M. De Angelis, On a model of superconductivity and biology, Advances and Applications in Mathematical Sciences, 7 (2010), 4150. 
[13] 
M. De Angelis, Asymptotic analysis for the strip problem related to a parabolic thirdorder operator, Applied Mathematics Letters, 14 (2001), 425430. 
[14] 
M. De Angelis, A priori estimates for excitable models, Meccanica (2013). doi: 10.1007/s1101201397632. 
[15] 
M. De Angelis, On exponentially shaped Josephson junctions, Acta appl. Math, 122 (2012), 179189 
[16] 
M. De Angelis, On a parabolic operator of dissipative systems,, submitted to Acta appl. Math, (). 
[17] 
M. De Angelis and G. Fiore, Existence and uniqueness of solutions of a class of third order dissipative problems with various boundary conditions describing the Josephson effect, J. Math. Anal. Appl., 404 (2013), 477490. doi: 10.1016/j.jmaa.2013.03.029. 
[18] 
M. De Angelis, A. Maio and E. Mazziotti, Existence and uniqueness results for a class of non linear models, in "Mathematical Physics Models and Engineering Sciences" (ed. Liguori), Italy, (2008), 191202. 
[19] 
M. De Angelis and E. Mazziotti, Non linear travelling waves with diffusion, Rend. Acc. Sc. Fis. Mat. Napoli, 73 (2006), 2336. 
[20] 
De Angelis, A. M. Monte and P. M. Renno, On fast and slow times in models with diffusion, Math Models and Methods in Applied Sciences, 12 (2002), 17411749. 
[21] 
M. De Angelis and P. Renno, Asymptotic effects of boundary perturbations in excitable systems, (2013),, submitted to Discrete and Continuous Dynamical Systems  B. Available from: \url{http://arxiv.org/pdf/1304.3891v1.pdf}, (). 
[22] 
M. De Angelis and P. Renno, Existence, uniqueness and a priori estimates for a non linear integrodifferential equation, Ric Mat, 57 (2008), 95109. 
[23] 
De Angelis and P. M. Renno, Diffusion and wave behaviour in linear Voigt model, C. R. Mecanique, 330 (2002), 2126 
[24] 
Gutman S. Junhohg Ha, Identification problem for damped sine Gordon equation with point sources, J. Math. Anal. Appl., 375 (2011), 648666. doi: 10.1016/j.jmaa.2010.10.006. 
[25] 
E. M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting," The MIT press, England, 2007. 
[26] 
M. Jaworski, "Fluxon Dynamics in Exponentially Shaped Josephson Junction," Phy. rev. B, 71 (2005), 16. 
[27] 
M. Jaworski, Exponentially tapered Josephson junction: some analytic results, Theor and Math Phys, 144 (2005), 11761180. 
[28] 
J. McCall and Lindsa, Superconductor cables: Advanced capabilities for the smart grid, Utility Automation Engineering TD, 13 (2008), 54. 
[29] 
J. D. Murray, "Mathematical Biology. I. An Introduction," SpringerVerlag, N.Y, 2002. 
[30] 
S. Rionero, Asymptotic behaviour of solutions to a nonlinear third order P.D.E modeling physical phenomena, Boll Unione Mat Ital, 9 (2012), 451468. 
[31] 
H. Rogalla and P. H. Kes, "100 Years of Superconductivity," CRC Press, (2012). 
[32] 
A.C. Scott, "The Nonlinear Universe: Chaos, Emergence, Life," SpringerVerlag, 2007. 
[33] 
A.C. Scott, "Neuroscience A mathematical Primer," SpringerVerlag, 2002. 
[1] 
G. Métivier, K. Zumbrun. Symmetrizers and continuity of stable subspaces for parabolichyperbolic boundary value problems. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 205220. doi: 10.3934/dcds.2004.11.205 
[2] 
Denis R. Akhmetov, Renato Spigler. $L^1$estimates for the higherorder derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure and Applied Analysis, 2007, 6 (4) : 10511074. doi: 10.3934/cpaa.2007.6.1051 
[3] 
M. Grasselli, V. Pata. Asymptotic behavior of a parabolichyperbolic system. Communications on Pure and Applied Analysis, 2004, 3 (4) : 849881. doi: 10.3934/cpaa.2004.3.849 
[4] 
YoungSam Kwon. Strong traces for degenerate parabolichyperbolic equations. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 12751286. doi: 10.3934/dcds.2009.25.1275 
[5] 
Runzhang Xu, Mingyou Zhang, Shaohua Chen, Yanbing Yang, Jihong Shen. The initialboundary value problems for a class of sixth order nonlinear wave equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 56315649. doi: 10.3934/dcds.2017244 
[6] 
Weisheng Niu, Yao Xu. Convergence rates in homogenization of higherorder parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 42034229. doi: 10.3934/dcds.2018183 
[7] 
Enrique FernándezCara, Luz de Teresa. Null controllability of a cascade system of parabolichyperbolic equations. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 699714. doi: 10.3934/dcds.2004.11.699 
[8] 
Zhiyuan Li, Xinchi Huang, Masahiro Yamamoto. Initialboundary value problems for multiterm timefractional diffusion equations with $ x $dependent coefficients. Evolution Equations and Control Theory, 2020, 9 (1) : 153179. doi: 10.3934/eect.2020001 
[9] 
Hiroshi Watanabe. Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients. Discrete and Continuous Dynamical Systems  S, 2014, 7 (1) : 177189. doi: 10.3934/dcdss.2014.7.177 
[10] 
Volodymyr O. Kapustyan, Ivan O. Pyshnograiev, Olena A. Kapustian. Quasioptimal control with a general quadratic criterion in a special norm for systems described by parabolichyperbolic equations with nonlocal boundary conditions. Discrete and Continuous Dynamical Systems  B, 2019, 24 (3) : 12431258. doi: 10.3934/dcdsb.2019014 
[11] 
Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851860. doi: 10.3934/proc.2015.0851 
[12] 
Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initialboundary value problem for quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 5978. doi: 10.3934/dcds.2005.12.59 
[13] 
Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initialboundary value problem of a 2D KazhikhovSmagulov type model. Discrete and Continuous Dynamical Systems  S, 2014, 7 (5) : 917923. doi: 10.3934/dcdss.2014.7.917 
[14] 
Peng Jiang. Unique global solution of an initialboundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 30153037. doi: 10.3934/dcds.2015.35.3015 
[15] 
Leo G. Rebholz, Dehua Wang, Zhian Wang, Camille Zerfas, Kun Zhao. Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multidimensions. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 37893838. doi: 10.3934/dcds.2019154 
[16] 
Michiel Bertsch, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. Standing and travelling waves in a parabolichyperbolic system. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 56035635. doi: 10.3934/dcds.2019246 
[17] 
Boling Guo, Jun Wu. Wellposedness of the initialboundary value problem for the fourthorder nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems  B, 2022, 27 (7) : 37493778. doi: 10.3934/dcdsb.2021205 
[18] 
Yang Cao, Qiuting Zhao. Initial boundary value problem of a class of mixed pseudoparabolic Kirchhoff equations. Electronic Research Archive, 2021, 29 (6) : 38333851. doi: 10.3934/era.2021064 
[19] 
V. A. Dougalis, D. E. Mitsotakis, J.C. Saut. On initialboundary value problems for a Boussinesq system of BBMBBM type in a plane domain. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 11911204. doi: 10.3934/dcds.2009.23.1191 
[20] 
ShouFu Tian. Initialboundary value problems for the coupled modified Kortewegde Vries equation on the interval. Communications on Pure and Applied Analysis, 2018, 17 (3) : 923957. doi: 10.3934/cpaa.2018046 
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]