January  2014, 13(1): 217-223. doi: 10.3934/cpaa.2014.13.217

Diffusion effects in a superconductive model

1. 

Univ. of Naples Federico II, Dept of Math and Appl, Via Claudio n. 21, 80125 Naples, Italy

2. 

Univ. of Naples Federico II, I.N.F.N., Sez. of Naples, Complesso MSA, V. Cintia, 80126 Naples, Italy

Received  November 2012 Revised  April 2013 Published  July 2013

A superconductive model characterized by a third order parabolic operator $ {\mathcal L}_\varepsilon $ is analyzed. When the viscous terms, represented by higher-order derivatives, tend to zero, a hyperbolic operator $ {\mathcal L}_0 $ appears. Furthermore, if ${\mathcal P}_\varepsilon$ is the Dirichlet initial-boundary value problem for $ {\mathcal L}_\varepsilon$, when ${\mathcal L} _\varepsilon $ turns into ${\mathcal L}_0 , $ ${\mathcal P}_\varepsilon$ turns into a problem ${\mathcal P}_0$ with the same initial-boundary conditions of ${\mathcal P}_\varepsilon $. As long as the higher-order derivatives of the solution of ${\mathcal P}_0$ are bounded, an estimate of solution for the nonlinear problem related to the remainder term $ r, $ is achieved. Moreover, some classes of explicit solutions related to $ {\mathcal P}_0 $ are determined, proving the existence of at least one motion whose derivatives are bounded. The estimate shows that the diffusion effects are bounded even when time tends to infinity.
Citation: Monica De Angelis, Gaetano Fiore. Diffusion effects in a superconductive model. Communications on Pure & Applied Analysis, 2014, 13 (1) : 217-223. doi: 10.3934/cpaa.2014.13.217
References:
[1]

T. Aktosun, F. Demontis, and C. van der Mee, Exact solutions to the sine-Gordon equation,, Journal of Mathematical Physics, 51 (2010), 1.   Google Scholar

[2]

A. Benabdallah, J. G. Caputo and A. C. Scott, Exponentially tapered josephson flux-flow oscillator,, Phy. Rev. B, 54 (1996).   Google Scholar

[3]

A. Benabdallah, J. G. Caputo and A. C. Scott, Laminar phase flow for an exponentially tapered josephson oscillator,, J. Apl. Phys., 588 (2000).   Google Scholar

[4]

S. Bondarenko and Nakagawa, SQUID-based magnetic microscope,, in, (2006), 195.   Google Scholar

[5]

T. L. Boyadjiev, E. G. Semerdjieva and Yu. M. Shukrinov, Common features of vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities,, Physica C, 460-462 (2007), 460.   Google Scholar

[6]

G. Carapella, N. Martucciello and G. Costabile, Experimental investigation of flux motion in exponentially shaped Josephson junctions,, PHYS REV B, 66 (2002).   Google Scholar

[7]

J. Clarke, "SQUIDs for Everything,", Nature Materials, 10 (2011).   Google Scholar

[8]

J. Clarke, SQUIDs: Then and Now,, chapter in BCS: 50 Years (eds. Leon N Cooper and Dmitri Feldman) World Scientific Publishing Co. Pte. Ltd., (2010).   Google Scholar

[9]

S. A. Cybart et al., Dynes Series array of incommensurate superconducting quantum interference devices,, Appl. Phys Lett, 93 (2008), 1.   Google Scholar

[10]

A. D'Anna, M. De Angelis and G. Fiore, Existence and uniqueness for some 3rd order dissipative problems with various boundary conditions,, Acta Appl. Math., 122 (2012), 255.   Google Scholar

[11]

M. Dehghan and A. Shokri, A numerical method for solution of the two dimensional sine- Gordon equation using the radial basis functions,, Mat Comp in Simulation, 79 (2008), 700.   Google Scholar

[12]

M. De Angelis, On a model of superconductivity and biology,, Advances and Applications in Mathematical Sciences, 7 (2010), 41.   Google Scholar

[13]

M. De Angelis, Asymptotic analysis for the strip problem related to a parabolic third-order operator,, Applied Mathematics Letters, (2001), 425.   Google Scholar

[14]

M. De Angelis, A priori estimates for excitable models,, Meccanica (2013)., (2013).  doi: 10.1007/s11012-013-9763-2.  Google Scholar

[15]

M. De Angelis, On exponentially shaped Josephson junctions,, Acta appl. Math, 122 (2012), 179.   Google Scholar

[16]

M. De Angelis, On a parabolic operator of dissipative systems,, submitted to Acta appl. Math, ().   Google Scholar

[17]

M. De Angelis and G. Fiore, Existence and uniqueness of solutions of a class of third order dissipative problems with various boundary conditions describing the Josephson effect,, J. Math. Anal. Appl., 404 (2013), 477.  doi: 10.1016/j.jmaa.2013.03.029.  Google Scholar

[18]

M. De Angelis, A. Maio and E. Mazziotti, Existence and uniqueness results for a class of non linear models,, in, (2008), 191.   Google Scholar

[19]

M. De Angelis and E. Mazziotti, Non linear travelling waves with diffusion,, Rend. Acc. Sc. Fis. Mat. Napoli, 73 (2006), 23.   Google Scholar

[20]

De Angelis, A. M. Monte and P. M. Renno, On fast and slow times in models with diffusion,, Math Models and Methods in Applied Sciences, 12 (2002), 1741.   Google Scholar

[21]

M. De Angelis and P. Renno, Asymptotic effects of boundary perturbations in excitable systems, (2013),, submitted to Discrete and Continuous Dynamical Systems - B. Available from: \url{http://arxiv.org/pdf/1304.3891v1.pdf}, ().   Google Scholar

[22]

M. De Angelis and P. Renno, Existence, uniqueness and a priori estimates for a non linear integro-differential equation,, Ric Mat, 57 (2008), 95.   Google Scholar

[23]

De Angelis and P. M. Renno, Diffusion and wave behaviour in linear Voigt model,, C. R. Mecanique, 330 (2002), 21.   Google Scholar

[24]

Gutman S. Junhohg Ha, Identification problem for damped sine Gordon equation with point sources,, J. Math. Anal. Appl., 375 (2011), 648.  doi: 10.1016/j.jmaa.2010.10.006.  Google Scholar

[25]

E. M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,", The MIT press, (2007).   Google Scholar

[26]

M. Jaworski, "Fluxon Dynamics in Exponentially Shaped Josephson Junction,", Phy. rev. B, 71 (2005), 1.   Google Scholar

[27]

M. Jaworski, Exponentially tapered Josephson junction: some analytic results,, Theor and Math Phys, 144 (2005), 1176.   Google Scholar

[28]

J. McCall and Lindsa, Superconductor cables: Advanced capabilities for the smart grid,, Utility Automation Engineering TD, 13 (2008).   Google Scholar

[29]

J. D. Murray, "Mathematical Biology. I. An Introduction,", Springer-Verlag, (2002).   Google Scholar

[30]

S. Rionero, Asymptotic behaviour of solutions to a nonlinear third order P.D.E modeling physical phenomena,, Boll Unione Mat Ital, 9 (2012), 451.   Google Scholar

[31]

H. Rogalla and P. H. Kes, "100 Years of Superconductivity,", CRC Press, (2012).   Google Scholar

[32]

A.C. Scott, "The Nonlinear Universe: Chaos, Emergence, Life,", Springer-Verlag, (2007).   Google Scholar

[33]

A.C. Scott, "Neuroscience A mathematical Primer,", Springer-Verlag, (2002).   Google Scholar

show all references

References:
[1]

T. Aktosun, F. Demontis, and C. van der Mee, Exact solutions to the sine-Gordon equation,, Journal of Mathematical Physics, 51 (2010), 1.   Google Scholar

[2]

A. Benabdallah, J. G. Caputo and A. C. Scott, Exponentially tapered josephson flux-flow oscillator,, Phy. Rev. B, 54 (1996).   Google Scholar

[3]

A. Benabdallah, J. G. Caputo and A. C. Scott, Laminar phase flow for an exponentially tapered josephson oscillator,, J. Apl. Phys., 588 (2000).   Google Scholar

[4]

S. Bondarenko and Nakagawa, SQUID-based magnetic microscope,, in, (2006), 195.   Google Scholar

[5]

T. L. Boyadjiev, E. G. Semerdjieva and Yu. M. Shukrinov, Common features of vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities,, Physica C, 460-462 (2007), 460.   Google Scholar

[6]

G. Carapella, N. Martucciello and G. Costabile, Experimental investigation of flux motion in exponentially shaped Josephson junctions,, PHYS REV B, 66 (2002).   Google Scholar

[7]

J. Clarke, "SQUIDs for Everything,", Nature Materials, 10 (2011).   Google Scholar

[8]

J. Clarke, SQUIDs: Then and Now,, chapter in BCS: 50 Years (eds. Leon N Cooper and Dmitri Feldman) World Scientific Publishing Co. Pte. Ltd., (2010).   Google Scholar

[9]

S. A. Cybart et al., Dynes Series array of incommensurate superconducting quantum interference devices,, Appl. Phys Lett, 93 (2008), 1.   Google Scholar

[10]

A. D'Anna, M. De Angelis and G. Fiore, Existence and uniqueness for some 3rd order dissipative problems with various boundary conditions,, Acta Appl. Math., 122 (2012), 255.   Google Scholar

[11]

M. Dehghan and A. Shokri, A numerical method for solution of the two dimensional sine- Gordon equation using the radial basis functions,, Mat Comp in Simulation, 79 (2008), 700.   Google Scholar

[12]

M. De Angelis, On a model of superconductivity and biology,, Advances and Applications in Mathematical Sciences, 7 (2010), 41.   Google Scholar

[13]

M. De Angelis, Asymptotic analysis for the strip problem related to a parabolic third-order operator,, Applied Mathematics Letters, (2001), 425.   Google Scholar

[14]

M. De Angelis, A priori estimates for excitable models,, Meccanica (2013)., (2013).  doi: 10.1007/s11012-013-9763-2.  Google Scholar

[15]

M. De Angelis, On exponentially shaped Josephson junctions,, Acta appl. Math, 122 (2012), 179.   Google Scholar

[16]

M. De Angelis, On a parabolic operator of dissipative systems,, submitted to Acta appl. Math, ().   Google Scholar

[17]

M. De Angelis and G. Fiore, Existence and uniqueness of solutions of a class of third order dissipative problems with various boundary conditions describing the Josephson effect,, J. Math. Anal. Appl., 404 (2013), 477.  doi: 10.1016/j.jmaa.2013.03.029.  Google Scholar

[18]

M. De Angelis, A. Maio and E. Mazziotti, Existence and uniqueness results for a class of non linear models,, in, (2008), 191.   Google Scholar

[19]

M. De Angelis and E. Mazziotti, Non linear travelling waves with diffusion,, Rend. Acc. Sc. Fis. Mat. Napoli, 73 (2006), 23.   Google Scholar

[20]

De Angelis, A. M. Monte and P. M. Renno, On fast and slow times in models with diffusion,, Math Models and Methods in Applied Sciences, 12 (2002), 1741.   Google Scholar

[21]

M. De Angelis and P. Renno, Asymptotic effects of boundary perturbations in excitable systems, (2013),, submitted to Discrete and Continuous Dynamical Systems - B. Available from: \url{http://arxiv.org/pdf/1304.3891v1.pdf}, ().   Google Scholar

[22]

M. De Angelis and P. Renno, Existence, uniqueness and a priori estimates for a non linear integro-differential equation,, Ric Mat, 57 (2008), 95.   Google Scholar

[23]

De Angelis and P. M. Renno, Diffusion and wave behaviour in linear Voigt model,, C. R. Mecanique, 330 (2002), 21.   Google Scholar

[24]

Gutman S. Junhohg Ha, Identification problem for damped sine Gordon equation with point sources,, J. Math. Anal. Appl., 375 (2011), 648.  doi: 10.1016/j.jmaa.2010.10.006.  Google Scholar

[25]

E. M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,", The MIT press, (2007).   Google Scholar

[26]

M. Jaworski, "Fluxon Dynamics in Exponentially Shaped Josephson Junction,", Phy. rev. B, 71 (2005), 1.   Google Scholar

[27]

M. Jaworski, Exponentially tapered Josephson junction: some analytic results,, Theor and Math Phys, 144 (2005), 1176.   Google Scholar

[28]

J. McCall and Lindsa, Superconductor cables: Advanced capabilities for the smart grid,, Utility Automation Engineering TD, 13 (2008).   Google Scholar

[29]

J. D. Murray, "Mathematical Biology. I. An Introduction,", Springer-Verlag, (2002).   Google Scholar

[30]

S. Rionero, Asymptotic behaviour of solutions to a nonlinear third order P.D.E modeling physical phenomena,, Boll Unione Mat Ital, 9 (2012), 451.   Google Scholar

[31]

H. Rogalla and P. H. Kes, "100 Years of Superconductivity,", CRC Press, (2012).   Google Scholar

[32]

A.C. Scott, "The Nonlinear Universe: Chaos, Emergence, Life,", Springer-Verlag, (2007).   Google Scholar

[33]

A.C. Scott, "Neuroscience A mathematical Primer,", Springer-Verlag, (2002).   Google Scholar

[1]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[2]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[5]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[6]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[7]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[8]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[9]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[10]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[13]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[14]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[15]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[16]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[17]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[18]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[19]

Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025

[20]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]