January  2014, 13(1): 217-223. doi: 10.3934/cpaa.2014.13.217

Diffusion effects in a superconductive model

1. 

Univ. of Naples Federico II, Dept of Math and Appl, Via Claudio n. 21, 80125 Naples, Italy

2. 

Univ. of Naples Federico II, I.N.F.N., Sez. of Naples, Complesso MSA, V. Cintia, 80126 Naples, Italy

Received  November 2012 Revised  April 2013 Published  July 2013

A superconductive model characterized by a third order parabolic operator $ {\mathcal L}_\varepsilon $ is analyzed. When the viscous terms, represented by higher-order derivatives, tend to zero, a hyperbolic operator $ {\mathcal L}_0 $ appears. Furthermore, if ${\mathcal P}_\varepsilon$ is the Dirichlet initial-boundary value problem for $ {\mathcal L}_\varepsilon$, when ${\mathcal L} _\varepsilon $ turns into ${\mathcal L}_0 , $ ${\mathcal P}_\varepsilon$ turns into a problem ${\mathcal P}_0$ with the same initial-boundary conditions of ${\mathcal P}_\varepsilon $. As long as the higher-order derivatives of the solution of ${\mathcal P}_0$ are bounded, an estimate of solution for the nonlinear problem related to the remainder term $ r, $ is achieved. Moreover, some classes of explicit solutions related to $ {\mathcal P}_0 $ are determined, proving the existence of at least one motion whose derivatives are bounded. The estimate shows that the diffusion effects are bounded even when time tends to infinity.
Citation: Monica De Angelis, Gaetano Fiore. Diffusion effects in a superconductive model. Communications on Pure & Applied Analysis, 2014, 13 (1) : 217-223. doi: 10.3934/cpaa.2014.13.217
References:
[1]

T. Aktosun, F. Demontis, and C. van der Mee, Exact solutions to the sine-Gordon equation,, Journal of Mathematical Physics, 51 (2010), 1.   Google Scholar

[2]

A. Benabdallah, J. G. Caputo and A. C. Scott, Exponentially tapered josephson flux-flow oscillator,, Phy. Rev. B, 54 (1996).   Google Scholar

[3]

A. Benabdallah, J. G. Caputo and A. C. Scott, Laminar phase flow for an exponentially tapered josephson oscillator,, J. Apl. Phys., 588 (2000).   Google Scholar

[4]

S. Bondarenko and Nakagawa, SQUID-based magnetic microscope,, in, (2006), 195.   Google Scholar

[5]

T. L. Boyadjiev, E. G. Semerdjieva and Yu. M. Shukrinov, Common features of vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities,, Physica C, 460-462 (2007), 460.   Google Scholar

[6]

G. Carapella, N. Martucciello and G. Costabile, Experimental investigation of flux motion in exponentially shaped Josephson junctions,, PHYS REV B, 66 (2002).   Google Scholar

[7]

J. Clarke, "SQUIDs for Everything,", Nature Materials, 10 (2011).   Google Scholar

[8]

J. Clarke, SQUIDs: Then and Now,, chapter in BCS: 50 Years (eds. Leon N Cooper and Dmitri Feldman) World Scientific Publishing Co. Pte. Ltd., (2010).   Google Scholar

[9]

S. A. Cybart et al., Dynes Series array of incommensurate superconducting quantum interference devices,, Appl. Phys Lett, 93 (2008), 1.   Google Scholar

[10]

A. D'Anna, M. De Angelis and G. Fiore, Existence and uniqueness for some 3rd order dissipative problems with various boundary conditions,, Acta Appl. Math., 122 (2012), 255.   Google Scholar

[11]

M. Dehghan and A. Shokri, A numerical method for solution of the two dimensional sine- Gordon equation using the radial basis functions,, Mat Comp in Simulation, 79 (2008), 700.   Google Scholar

[12]

M. De Angelis, On a model of superconductivity and biology,, Advances and Applications in Mathematical Sciences, 7 (2010), 41.   Google Scholar

[13]

M. De Angelis, Asymptotic analysis for the strip problem related to a parabolic third-order operator,, Applied Mathematics Letters, (2001), 425.   Google Scholar

[14]

M. De Angelis, A priori estimates for excitable models,, Meccanica (2013)., (2013).  doi: 10.1007/s11012-013-9763-2.  Google Scholar

[15]

M. De Angelis, On exponentially shaped Josephson junctions,, Acta appl. Math, 122 (2012), 179.   Google Scholar

[16]

M. De Angelis, On a parabolic operator of dissipative systems,, submitted to Acta appl. Math, ().   Google Scholar

[17]

M. De Angelis and G. Fiore, Existence and uniqueness of solutions of a class of third order dissipative problems with various boundary conditions describing the Josephson effect,, J. Math. Anal. Appl., 404 (2013), 477.  doi: 10.1016/j.jmaa.2013.03.029.  Google Scholar

[18]

M. De Angelis, A. Maio and E. Mazziotti, Existence and uniqueness results for a class of non linear models,, in, (2008), 191.   Google Scholar

[19]

M. De Angelis and E. Mazziotti, Non linear travelling waves with diffusion,, Rend. Acc. Sc. Fis. Mat. Napoli, 73 (2006), 23.   Google Scholar

[20]

De Angelis, A. M. Monte and P. M. Renno, On fast and slow times in models with diffusion,, Math Models and Methods in Applied Sciences, 12 (2002), 1741.   Google Scholar

[21]

M. De Angelis and P. Renno, Asymptotic effects of boundary perturbations in excitable systems, (2013),, submitted to Discrete and Continuous Dynamical Systems - B. Available from: \url{http://arxiv.org/pdf/1304.3891v1.pdf}, ().   Google Scholar

[22]

M. De Angelis and P. Renno, Existence, uniqueness and a priori estimates for a non linear integro-differential equation,, Ric Mat, 57 (2008), 95.   Google Scholar

[23]

De Angelis and P. M. Renno, Diffusion and wave behaviour in linear Voigt model,, C. R. Mecanique, 330 (2002), 21.   Google Scholar

[24]

Gutman S. Junhohg Ha, Identification problem for damped sine Gordon equation with point sources,, J. Math. Anal. Appl., 375 (2011), 648.  doi: 10.1016/j.jmaa.2010.10.006.  Google Scholar

[25]

E. M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,", The MIT press, (2007).   Google Scholar

[26]

M. Jaworski, "Fluxon Dynamics in Exponentially Shaped Josephson Junction,", Phy. rev. B, 71 (2005), 1.   Google Scholar

[27]

M. Jaworski, Exponentially tapered Josephson junction: some analytic results,, Theor and Math Phys, 144 (2005), 1176.   Google Scholar

[28]

J. McCall and Lindsa, Superconductor cables: Advanced capabilities for the smart grid,, Utility Automation Engineering TD, 13 (2008).   Google Scholar

[29]

J. D. Murray, "Mathematical Biology. I. An Introduction,", Springer-Verlag, (2002).   Google Scholar

[30]

S. Rionero, Asymptotic behaviour of solutions to a nonlinear third order P.D.E modeling physical phenomena,, Boll Unione Mat Ital, 9 (2012), 451.   Google Scholar

[31]

H. Rogalla and P. H. Kes, "100 Years of Superconductivity,", CRC Press, (2012).   Google Scholar

[32]

A.C. Scott, "The Nonlinear Universe: Chaos, Emergence, Life,", Springer-Verlag, (2007).   Google Scholar

[33]

A.C. Scott, "Neuroscience A mathematical Primer,", Springer-Verlag, (2002).   Google Scholar

show all references

References:
[1]

T. Aktosun, F. Demontis, and C. van der Mee, Exact solutions to the sine-Gordon equation,, Journal of Mathematical Physics, 51 (2010), 1.   Google Scholar

[2]

A. Benabdallah, J. G. Caputo and A. C. Scott, Exponentially tapered josephson flux-flow oscillator,, Phy. Rev. B, 54 (1996).   Google Scholar

[3]

A. Benabdallah, J. G. Caputo and A. C. Scott, Laminar phase flow for an exponentially tapered josephson oscillator,, J. Apl. Phys., 588 (2000).   Google Scholar

[4]

S. Bondarenko and Nakagawa, SQUID-based magnetic microscope,, in, (2006), 195.   Google Scholar

[5]

T. L. Boyadjiev, E. G. Semerdjieva and Yu. M. Shukrinov, Common features of vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities,, Physica C, 460-462 (2007), 460.   Google Scholar

[6]

G. Carapella, N. Martucciello and G. Costabile, Experimental investigation of flux motion in exponentially shaped Josephson junctions,, PHYS REV B, 66 (2002).   Google Scholar

[7]

J. Clarke, "SQUIDs for Everything,", Nature Materials, 10 (2011).   Google Scholar

[8]

J. Clarke, SQUIDs: Then and Now,, chapter in BCS: 50 Years (eds. Leon N Cooper and Dmitri Feldman) World Scientific Publishing Co. Pte. Ltd., (2010).   Google Scholar

[9]

S. A. Cybart et al., Dynes Series array of incommensurate superconducting quantum interference devices,, Appl. Phys Lett, 93 (2008), 1.   Google Scholar

[10]

A. D'Anna, M. De Angelis and G. Fiore, Existence and uniqueness for some 3rd order dissipative problems with various boundary conditions,, Acta Appl. Math., 122 (2012), 255.   Google Scholar

[11]

M. Dehghan and A. Shokri, A numerical method for solution of the two dimensional sine- Gordon equation using the radial basis functions,, Mat Comp in Simulation, 79 (2008), 700.   Google Scholar

[12]

M. De Angelis, On a model of superconductivity and biology,, Advances and Applications in Mathematical Sciences, 7 (2010), 41.   Google Scholar

[13]

M. De Angelis, Asymptotic analysis for the strip problem related to a parabolic third-order operator,, Applied Mathematics Letters, (2001), 425.   Google Scholar

[14]

M. De Angelis, A priori estimates for excitable models,, Meccanica (2013)., (2013).  doi: 10.1007/s11012-013-9763-2.  Google Scholar

[15]

M. De Angelis, On exponentially shaped Josephson junctions,, Acta appl. Math, 122 (2012), 179.   Google Scholar

[16]

M. De Angelis, On a parabolic operator of dissipative systems,, submitted to Acta appl. Math, ().   Google Scholar

[17]

M. De Angelis and G. Fiore, Existence and uniqueness of solutions of a class of third order dissipative problems with various boundary conditions describing the Josephson effect,, J. Math. Anal. Appl., 404 (2013), 477.  doi: 10.1016/j.jmaa.2013.03.029.  Google Scholar

[18]

M. De Angelis, A. Maio and E. Mazziotti, Existence and uniqueness results for a class of non linear models,, in, (2008), 191.   Google Scholar

[19]

M. De Angelis and E. Mazziotti, Non linear travelling waves with diffusion,, Rend. Acc. Sc. Fis. Mat. Napoli, 73 (2006), 23.   Google Scholar

[20]

De Angelis, A. M. Monte and P. M. Renno, On fast and slow times in models with diffusion,, Math Models and Methods in Applied Sciences, 12 (2002), 1741.   Google Scholar

[21]

M. De Angelis and P. Renno, Asymptotic effects of boundary perturbations in excitable systems, (2013),, submitted to Discrete and Continuous Dynamical Systems - B. Available from: \url{http://arxiv.org/pdf/1304.3891v1.pdf}, ().   Google Scholar

[22]

M. De Angelis and P. Renno, Existence, uniqueness and a priori estimates for a non linear integro-differential equation,, Ric Mat, 57 (2008), 95.   Google Scholar

[23]

De Angelis and P. M. Renno, Diffusion and wave behaviour in linear Voigt model,, C. R. Mecanique, 330 (2002), 21.   Google Scholar

[24]

Gutman S. Junhohg Ha, Identification problem for damped sine Gordon equation with point sources,, J. Math. Anal. Appl., 375 (2011), 648.  doi: 10.1016/j.jmaa.2010.10.006.  Google Scholar

[25]

E. M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,", The MIT press, (2007).   Google Scholar

[26]

M. Jaworski, "Fluxon Dynamics in Exponentially Shaped Josephson Junction,", Phy. rev. B, 71 (2005), 1.   Google Scholar

[27]

M. Jaworski, Exponentially tapered Josephson junction: some analytic results,, Theor and Math Phys, 144 (2005), 1176.   Google Scholar

[28]

J. McCall and Lindsa, Superconductor cables: Advanced capabilities for the smart grid,, Utility Automation Engineering TD, 13 (2008).   Google Scholar

[29]

J. D. Murray, "Mathematical Biology. I. An Introduction,", Springer-Verlag, (2002).   Google Scholar

[30]

S. Rionero, Asymptotic behaviour of solutions to a nonlinear third order P.D.E modeling physical phenomena,, Boll Unione Mat Ital, 9 (2012), 451.   Google Scholar

[31]

H. Rogalla and P. H. Kes, "100 Years of Superconductivity,", CRC Press, (2012).   Google Scholar

[32]

A.C. Scott, "The Nonlinear Universe: Chaos, Emergence, Life,", Springer-Verlag, (2007).   Google Scholar

[33]

A.C. Scott, "Neuroscience A mathematical Primer,", Springer-Verlag, (2002).   Google Scholar

[1]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[2]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[3]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[4]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[5]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[6]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[7]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[8]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[9]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[10]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[11]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[12]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[13]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[14]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[15]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[16]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[17]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[18]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[19]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[20]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]