• Previous Article
    Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold
  • CPAA Home
  • This Issue
  • Next Article
    Hodge type decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case
November  2014, 13(6): 2273-2287. doi: 10.3934/cpaa.2014.13.2273

Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity

1. 

Department of Mathematics, Huazhong Normal University, Wuhan 430079

2. 

Department of Mathematics, Huazhong Normal University, Wuhan, 430079, China

Received  August 2013 Revised  May 2014 Published  July 2014

This paper is concerned with the existence of positive solutions for a class of quasilinear Schrödinger equations in $R^N$ with critical growth and potential vanishing at infinity. By using a change of variables, the quasilinear equations are reduced to semilinear one. Since the potential vanish at infinity, the associated functionals are still not well defined in the usual Sobolev space. So we have to work in the weighted Sobolev spaces, by Hardy-type inequality, then the functionals are well defined in the weighted Sobolev space and satisfy the geometric conditions of the Mountain Pass Theorem. Using this fact, we obtain a Cerami sequence converging weakly to a solution $v$. In the proof that $v$ is nontrivial, the main tool is classical arguments used by H. Brezis and L. Nirenberg in [13].
Citation: Yinbin Deng, Wei Shuai. Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2273-2287. doi: 10.3934/cpaa.2014.13.2273
References:
[1]

Claudianor O. Alves and Marco A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potentials vanishing at infinitly,, \emph{J. Differential Equations, 254 (2013), 1977.  doi: 10.1016/j.jde.2012.11.013.  Google Scholar

[2]

A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinitly,, \emph{J. Eur. Math. Soc.}, 7 (2005), 117.  doi: 10.4171/JEMS/24.  Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Func. Anal., 14 (1973), 349.   Google Scholar

[4]

A. Ambrosetti and Z-Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials,, \emph{Differential Integral Equations, 18 (2005), 1321.   Google Scholar

[5]

S. Bae, H. O. Choi and D. H. Pahk, Existence of nodal solutions of nonlinear elliptic equations,, \emph{ Proc. Roy. Soc. Edinburgh Sect., A 137 (2007), 1135.  doi: 10.1017/S0308210505000727.  Google Scholar

[6]

Denis Bonheure and Jean Van Schaftingen, Groundstates for the nonlinear Schrödinger equation with potentials vanishing at infinitly,, \emph{Ann. Mat. Pura Appl., 189 (2010), 273.  doi: 10.1007/s10231-009-0109-6.  Google Scholar

[7]

T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on $R^N$,, \emph{Arch. Ration. Mech. Anal., 124 (1993), 261.  doi: 10.1007/BF00953069.  Google Scholar

[8]

F. G. Bass and N. N. Nasanov, Nonlinear electromagnetic-spin waves,, \emph{Phys. Rep., 189 (1990), 165.  doi: 10.1016/0370-1573(90)90093-H.  Google Scholar

[9]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I: Existence of a ground state,, \emph{Arch. Ration. Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[10]

João M. Bezerra do Ó, Olímpio H. Miyagaki and Sérgio H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth,, \emph{J. Differential Equations, 248 (2010), 722.  doi: 10.1016/j.jde.2009.11.030.  Google Scholar

[11]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma,, \emph{Phys. Fluids B, 5 (1993), 3539.  doi: 10.1063/1.870756.  Google Scholar

[12]

H. Brezis and E. Lieb, A relation between pointwise convergence of function and convergence of functional,, \emph{Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.2307/2044999.  Google Scholar

[13]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure. Appl. Math.}, 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[14]

L. Brizhik, A. Eremko, B. Piette and W. J. Zakrzewski, Static solutions of a $D$-dimensional modified nonlinear Schrödinger equation,, \emph{Nonlinearity}, 16 (2003), 1481.  doi: 10.1088/0951-7715/16/4/317.  Google Scholar

[15]

L. Brüll and H. Lange, Solitary waves for quasilinear Schrödinger equations,, \emph{Exposition. Math., 4 (1986), 279.   Google Scholar

[16]

G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents,, \emph{J. Func. Anal., 69 (1986), 289.  doi: 10.1016/0022-1236(86)90094-7.  Google Scholar

[17]

X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma,, \emph{Phys. Rev. Lett., 70 (1993), 2082.   Google Scholar

[18]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach,, \emph{Nonlinear Anal. TMA., 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[19]

S. Cuccagna, On instability of excited states of the nonloinear Schrödinger equation,, \emph{Physica D, 238 (2009), 38.  doi: 10.1016/j.physd.2008.08.010.  Google Scholar

[20]

A. De Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation,, \emph{Comm. Math. Phys., 189 (1997), 73.  doi: 10.1007/s002200050191.  Google Scholar

[21]

Y. Deng, S. Peng and J. Wang, Infinitely many sign-changing solutions for quasilinear Schrödinger equations in $R^N$,, \emph{Commun. Math. Sci., 9 (2011), 859.  doi: 10.4310/CMS.2011.v9.n3.a9.  Google Scholar

[22]

Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent,, \emph{J. Math. Phys., 54 (2013), 1.  doi: 10.1063/1.4774153.  Google Scholar

[23]

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, \emph{J. Funct. Anal., 69 (1986), 397.  doi: 10.1016/0022-1236(86)90096-0.  Google Scholar

[24]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations,, \emph{Z. Phys. B, 37 (1980), 83.  doi: 10.1007/BF01325508.  Google Scholar

[25]

A. M. Kosevich, B. A. Ivanov and A. S. Kovalev, Magnetic solitons,, \emph{\it Phys. Rep., 194 (1990), 117.  doi: 10.1016/0370-1573(90)90130-T.  Google Scholar

[26]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, \emph{J. Phys. Soc. Japan, 50 (1981), 3262.   Google Scholar

[27]

E. Laedke, K. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions,, \emph{J. Math. Phys., 24 (1983), 2764.  doi: 10.1063/1.525675.  Google Scholar

[28]

H. Lange, M. Poppenberg and H. Teismann, Nash-Moser methods for the solution of quasilinear Schrödinger equations,, \emph{Comm. Partial Differential Equations, 24 (1999), 1399.  doi: 10.1080/03605309908821469.  Google Scholar

[29]

J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II,, \emph{J. Differential Equations, 187 (2003), 473.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[30]

J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, \emph{Comm. Partial Differential Equations, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[31]

J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I.,, \emph{Proc. Amer. Math. Soc., 131 (2003), 441.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[32]

J. Liu and Z. Wang, Symmetric solutions to a modified nonlinear Schrödinger equation,, \emph{Nonlinearity, 21 (2008), 121.  doi: 10.1088/0951-7715/21/1/007.  Google Scholar

[33]

Xiang-Qing Liu, Jia-Quan Liu and Zhi Qiang Wang, Quasilinear elliptic equations with critical growth via pertubation method,, \emph{Journal Differential Equations, 254 (2013), 102.  doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[34]

S. Lorca and P. Ubilla, Symmetric and nonsymmetric solutions for an elliptic equation on $R^N$,, \emph{Nonlinear Anal., 58 (2004), 961.  doi: 10.1016/j.na.2004.03.034.  Google Scholar

[35]

V. G. Makhankov and V. K. Fedyanin, Nonlinear effects in quasi-one-dimensional models and condensed matter theory,, \emph{Phys. Rep., 104 (1984), 1.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[36]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\R^N$,, \emph{J. Differential Equations, 229 (2006), 570.  doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[37]

M. Musso, F. Pacard and J. Wei, Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation,, \emph{J. Eur. Math. Soc.}, 14 (2012), 1923.  doi: 10.4171/JEMS/351.  Google Scholar

[38]

B. Opic and A. Kufner, Hardy-Type Inequalities,, Pitman Res. Notes Math. Ser. vol. 219. Longman Scientific and Technical. Harlow, (1990).   Google Scholar

[39]

M. Poppenberg, K. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, \emph{Calc. Var. Partial Differential Equations, 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[40]

P. Pucci and J. Serrin, A general variational identity,, \emph{Indiana Univ. Math. J., 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[41]

G. R. W. Quispel and H. W. Capel, Equation of motion for the Heisenberg spin chain,, \emph{Phys. A, 110 (1982), 41.  doi: 10.1016/0378-4371(82)90104-2.  Google Scholar

[42]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations,, \emph{Z. Angew. Math. Phys., 43 (1992), 270.  doi: 10.1007/BF00946631.  Google Scholar

[43]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions,, \emph{Phys. Rev. E, 50 (1994), 687.   Google Scholar

[44]

W. A. Strauss, Existence of solitary waves in higher dimensions,, \emph{Comm. Math. Phys., 55 (1977), 149.   Google Scholar

show all references

References:
[1]

Claudianor O. Alves and Marco A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potentials vanishing at infinitly,, \emph{J. Differential Equations, 254 (2013), 1977.  doi: 10.1016/j.jde.2012.11.013.  Google Scholar

[2]

A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinitly,, \emph{J. Eur. Math. Soc.}, 7 (2005), 117.  doi: 10.4171/JEMS/24.  Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Func. Anal., 14 (1973), 349.   Google Scholar

[4]

A. Ambrosetti and Z-Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials,, \emph{Differential Integral Equations, 18 (2005), 1321.   Google Scholar

[5]

S. Bae, H. O. Choi and D. H. Pahk, Existence of nodal solutions of nonlinear elliptic equations,, \emph{ Proc. Roy. Soc. Edinburgh Sect., A 137 (2007), 1135.  doi: 10.1017/S0308210505000727.  Google Scholar

[6]

Denis Bonheure and Jean Van Schaftingen, Groundstates for the nonlinear Schrödinger equation with potentials vanishing at infinitly,, \emph{Ann. Mat. Pura Appl., 189 (2010), 273.  doi: 10.1007/s10231-009-0109-6.  Google Scholar

[7]

T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on $R^N$,, \emph{Arch. Ration. Mech. Anal., 124 (1993), 261.  doi: 10.1007/BF00953069.  Google Scholar

[8]

F. G. Bass and N. N. Nasanov, Nonlinear electromagnetic-spin waves,, \emph{Phys. Rep., 189 (1990), 165.  doi: 10.1016/0370-1573(90)90093-H.  Google Scholar

[9]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I: Existence of a ground state,, \emph{Arch. Ration. Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[10]

João M. Bezerra do Ó, Olímpio H. Miyagaki and Sérgio H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth,, \emph{J. Differential Equations, 248 (2010), 722.  doi: 10.1016/j.jde.2009.11.030.  Google Scholar

[11]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma,, \emph{Phys. Fluids B, 5 (1993), 3539.  doi: 10.1063/1.870756.  Google Scholar

[12]

H. Brezis and E. Lieb, A relation between pointwise convergence of function and convergence of functional,, \emph{Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.2307/2044999.  Google Scholar

[13]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure. Appl. Math.}, 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[14]

L. Brizhik, A. Eremko, B. Piette and W. J. Zakrzewski, Static solutions of a $D$-dimensional modified nonlinear Schrödinger equation,, \emph{Nonlinearity}, 16 (2003), 1481.  doi: 10.1088/0951-7715/16/4/317.  Google Scholar

[15]

L. Brüll and H. Lange, Solitary waves for quasilinear Schrödinger equations,, \emph{Exposition. Math., 4 (1986), 279.   Google Scholar

[16]

G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents,, \emph{J. Func. Anal., 69 (1986), 289.  doi: 10.1016/0022-1236(86)90094-7.  Google Scholar

[17]

X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma,, \emph{Phys. Rev. Lett., 70 (1993), 2082.   Google Scholar

[18]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach,, \emph{Nonlinear Anal. TMA., 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[19]

S. Cuccagna, On instability of excited states of the nonloinear Schrödinger equation,, \emph{Physica D, 238 (2009), 38.  doi: 10.1016/j.physd.2008.08.010.  Google Scholar

[20]

A. De Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation,, \emph{Comm. Math. Phys., 189 (1997), 73.  doi: 10.1007/s002200050191.  Google Scholar

[21]

Y. Deng, S. Peng and J. Wang, Infinitely many sign-changing solutions for quasilinear Schrödinger equations in $R^N$,, \emph{Commun. Math. Sci., 9 (2011), 859.  doi: 10.4310/CMS.2011.v9.n3.a9.  Google Scholar

[22]

Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent,, \emph{J. Math. Phys., 54 (2013), 1.  doi: 10.1063/1.4774153.  Google Scholar

[23]

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, \emph{J. Funct. Anal., 69 (1986), 397.  doi: 10.1016/0022-1236(86)90096-0.  Google Scholar

[24]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations,, \emph{Z. Phys. B, 37 (1980), 83.  doi: 10.1007/BF01325508.  Google Scholar

[25]

A. M. Kosevich, B. A. Ivanov and A. S. Kovalev, Magnetic solitons,, \emph{\it Phys. Rep., 194 (1990), 117.  doi: 10.1016/0370-1573(90)90130-T.  Google Scholar

[26]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, \emph{J. Phys. Soc. Japan, 50 (1981), 3262.   Google Scholar

[27]

E. Laedke, K. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions,, \emph{J. Math. Phys., 24 (1983), 2764.  doi: 10.1063/1.525675.  Google Scholar

[28]

H. Lange, M. Poppenberg and H. Teismann, Nash-Moser methods for the solution of quasilinear Schrödinger equations,, \emph{Comm. Partial Differential Equations, 24 (1999), 1399.  doi: 10.1080/03605309908821469.  Google Scholar

[29]

J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II,, \emph{J. Differential Equations, 187 (2003), 473.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[30]

J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, \emph{Comm. Partial Differential Equations, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[31]

J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I.,, \emph{Proc. Amer. Math. Soc., 131 (2003), 441.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[32]

J. Liu and Z. Wang, Symmetric solutions to a modified nonlinear Schrödinger equation,, \emph{Nonlinearity, 21 (2008), 121.  doi: 10.1088/0951-7715/21/1/007.  Google Scholar

[33]

Xiang-Qing Liu, Jia-Quan Liu and Zhi Qiang Wang, Quasilinear elliptic equations with critical growth via pertubation method,, \emph{Journal Differential Equations, 254 (2013), 102.  doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[34]

S. Lorca and P. Ubilla, Symmetric and nonsymmetric solutions for an elliptic equation on $R^N$,, \emph{Nonlinear Anal., 58 (2004), 961.  doi: 10.1016/j.na.2004.03.034.  Google Scholar

[35]

V. G. Makhankov and V. K. Fedyanin, Nonlinear effects in quasi-one-dimensional models and condensed matter theory,, \emph{Phys. Rep., 104 (1984), 1.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[36]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\R^N$,, \emph{J. Differential Equations, 229 (2006), 570.  doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[37]

M. Musso, F. Pacard and J. Wei, Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation,, \emph{J. Eur. Math. Soc.}, 14 (2012), 1923.  doi: 10.4171/JEMS/351.  Google Scholar

[38]

B. Opic and A. Kufner, Hardy-Type Inequalities,, Pitman Res. Notes Math. Ser. vol. 219. Longman Scientific and Technical. Harlow, (1990).   Google Scholar

[39]

M. Poppenberg, K. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, \emph{Calc. Var. Partial Differential Equations, 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[40]

P. Pucci and J. Serrin, A general variational identity,, \emph{Indiana Univ. Math. J., 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[41]

G. R. W. Quispel and H. W. Capel, Equation of motion for the Heisenberg spin chain,, \emph{Phys. A, 110 (1982), 41.  doi: 10.1016/0378-4371(82)90104-2.  Google Scholar

[42]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations,, \emph{Z. Angew. Math. Phys., 43 (1992), 270.  doi: 10.1007/BF00946631.  Google Scholar

[43]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions,, \emph{Phys. Rev. E, 50 (1994), 687.   Google Scholar

[44]

W. A. Strauss, Existence of solitary waves in higher dimensions,, \emph{Comm. Math. Phys., 55 (1977), 149.   Google Scholar

[1]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[2]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[5]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[6]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[7]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[8]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[9]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[10]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[11]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[12]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[13]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[14]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[15]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[16]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[17]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[18]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[19]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[20]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]