• Previous Article
    Mirror symmetry for a Hessian over-determined problem and its generalization
  • CPAA Home
  • This Issue
  • Next Article
    Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity
November  2014, 13(6): 2289-2303. doi: 10.3934/cpaa.2014.13.2289

Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold

1. 

College of Science, Hohai University, Nanjing, 210098, China, China

Received  September 2013 Revised  January 2014 Published  July 2014

In this paper, we study the existence of positive solution to $p-$Kirchhoff type problem \begin{eqnarray} &(a+\mu(\int_{\mathbb{R}^N}(|\nabla u|^p+V(x)|u|^p)dx)^{\tau})(-\Delta_pu+V(x)|u|^{p-2}u)=|u|^{m-2}u\\ &+\lambda |u|^{q-2}u, \; {\rm in}\; \mathbb{R}^N \\ &u(x)>0, \;\;{\rm in}\;\; \mathbb{R}^N,\;\; u\in W^{1,p}(\mathbb{R}^N), \end{eqnarray} where $a, \mu>0, \tau\ge 0, \lambda\in \mathbb{R} $ and $1 < p < N, p < q < m < p^*=\frac{pN}{N-p}$. The potential $V(x)\in C(\mathbb{R}^N)$ and $0 < \inf_{x\in\mathbb{R}^N}V(x) < \sup_{x\in\mathbb{R}^N}V(x) < \infty$. The existence of solution will be obtained by the Nehari manifold and variational method.
Citation: Caisheng Chen, Qing Yuan. Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2289-2303. doi: 10.3934/cpaa.2014.13.2289
References:
[1]

C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity,, \emph{J. Differential Equations}, 254 (2013), 1977.  doi: 10.1016/j.jde.2012.11.013.  Google Scholar

[2]

A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potential vanishing at infinity,, \emph{J. Eur. Math. Soc.}, 7 (2005), 117.  doi: 10.4171/JEMS/24.  Google Scholar

[3]

A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials,, \emph{Differential and Integral Equations}, 18 (2005), 1321.   Google Scholar

[4]

M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners,, 1$^{nd}$ edition, (2011).  doi: 10.1007/978-0-85729-227-8.  Google Scholar

[5]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, \emph{Arch. Rational Mech. Anal.}, 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[6]

J. Byeon and Z. Q. Wang, Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potential,, \emph{J. Eur. Math. Soc.}, 8 (2006), 217.  doi: 10.4171/JEMS/48.  Google Scholar

[7]

C. S. Chen, L. Chen and Z. H. Xiu, Existence of nontrivial solutions for singular quasilinear elliptic equations on $\mathbbR^N$,, \emph{Computers and Mathematics with Applications}, 6 (2013), 1909.  doi: 10.1016/j.camwa.2013.04.017.  Google Scholar

[8]

C. S. Chen and Q. Zhu, Existence of positive solutions to $p-$Kirchhoff-type problem without compactness conditions,, \emph{Applied Mathematics Letters}, 28 (2014), 82.  doi: 10.1016/j.aml.2013.10.005.  Google Scholar

[9]

S. J. Chen and L. Li, Multiple solutions for the nonhomogeneous Kirchhoff equation on $\mathbbR^N$,, \emph{Nonlinear Analysis: Real World Applications}, 14 (2013), 1477.  doi: 10.1016/j.nonrwa.2012.10.010.  Google Scholar

[10]

C. S. Chen, H. X. Song and Z. H. Xiu, Multiple solutions for $ p-$Kirchhoff equations in $\mathbbR^N$,, \emph{Nonlinear Analysis}, 86 (2013), 146.  doi: 10.1016/j.na.2013.03.017.  Google Scholar

[11]

W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation,, \emph{Arch. Rational Mech. Anal.}, 91 (1986), 283.  doi: 10.1007/BF00282336.  Google Scholar

[12]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics Vol.19, (1998).   Google Scholar

[13]

Y. H. Li, F. Y. Li and J. P. Shi, Existence of positive solution to Kirchhoff type problems without compactness conditions,, \emph{J. Differential Equations}, 253 (2012), 2285.  doi: 10.1016/j.jde.2012.05.017.  Google Scholar

[14]

Y. Li, Z. Q. Wang and J. Zeng, Ground states of nonlinear Schrödinger equations with potentials,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eire}, 23 (2006), 829.  doi: 10.1016/j.anihpc.2006.01.003.  Google Scholar

[15]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 1 (1984), 223.   Google Scholar

[16]

W. Liu and X. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations,, \emph{J. Appl. Math. Comput.}, 39 (2012), 473.  doi: 10.1007/s12190-012-0536-1.  Google Scholar

[17]

J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential,, \emph{Nonlinear Analysis}, 75 (2012), 3470.  doi: 10.1016/j.na.2012.01.004.  Google Scholar

[18]

X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbbR^N$,, \emph{Nonlinear Analysis: Real World Applications}, 12 (2011), 1278.  doi: 10.1016/j.nonrwa.2010.09.023.  Google Scholar

[19]

L. Wang, On a quasilinear Schrödinger-Kirchhoff-type equation with radial potentials,, \emph{Nonlinear Analysis}, 83 (2013), 58.  doi: 10.1016/j.na.2012.12.012.  Google Scholar

show all references

References:
[1]

C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity,, \emph{J. Differential Equations}, 254 (2013), 1977.  doi: 10.1016/j.jde.2012.11.013.  Google Scholar

[2]

A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potential vanishing at infinity,, \emph{J. Eur. Math. Soc.}, 7 (2005), 117.  doi: 10.4171/JEMS/24.  Google Scholar

[3]

A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials,, \emph{Differential and Integral Equations}, 18 (2005), 1321.   Google Scholar

[4]

M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners,, 1$^{nd}$ edition, (2011).  doi: 10.1007/978-0-85729-227-8.  Google Scholar

[5]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, \emph{Arch. Rational Mech. Anal.}, 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[6]

J. Byeon and Z. Q. Wang, Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potential,, \emph{J. Eur. Math. Soc.}, 8 (2006), 217.  doi: 10.4171/JEMS/48.  Google Scholar

[7]

C. S. Chen, L. Chen and Z. H. Xiu, Existence of nontrivial solutions for singular quasilinear elliptic equations on $\mathbbR^N$,, \emph{Computers and Mathematics with Applications}, 6 (2013), 1909.  doi: 10.1016/j.camwa.2013.04.017.  Google Scholar

[8]

C. S. Chen and Q. Zhu, Existence of positive solutions to $p-$Kirchhoff-type problem without compactness conditions,, \emph{Applied Mathematics Letters}, 28 (2014), 82.  doi: 10.1016/j.aml.2013.10.005.  Google Scholar

[9]

S. J. Chen and L. Li, Multiple solutions for the nonhomogeneous Kirchhoff equation on $\mathbbR^N$,, \emph{Nonlinear Analysis: Real World Applications}, 14 (2013), 1477.  doi: 10.1016/j.nonrwa.2012.10.010.  Google Scholar

[10]

C. S. Chen, H. X. Song and Z. H. Xiu, Multiple solutions for $ p-$Kirchhoff equations in $\mathbbR^N$,, \emph{Nonlinear Analysis}, 86 (2013), 146.  doi: 10.1016/j.na.2013.03.017.  Google Scholar

[11]

W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation,, \emph{Arch. Rational Mech. Anal.}, 91 (1986), 283.  doi: 10.1007/BF00282336.  Google Scholar

[12]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics Vol.19, (1998).   Google Scholar

[13]

Y. H. Li, F. Y. Li and J. P. Shi, Existence of positive solution to Kirchhoff type problems without compactness conditions,, \emph{J. Differential Equations}, 253 (2012), 2285.  doi: 10.1016/j.jde.2012.05.017.  Google Scholar

[14]

Y. Li, Z. Q. Wang and J. Zeng, Ground states of nonlinear Schrödinger equations with potentials,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eire}, 23 (2006), 829.  doi: 10.1016/j.anihpc.2006.01.003.  Google Scholar

[15]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 1 (1984), 223.   Google Scholar

[16]

W. Liu and X. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations,, \emph{J. Appl. Math. Comput.}, 39 (2012), 473.  doi: 10.1007/s12190-012-0536-1.  Google Scholar

[17]

J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential,, \emph{Nonlinear Analysis}, 75 (2012), 3470.  doi: 10.1016/j.na.2012.01.004.  Google Scholar

[18]

X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbbR^N$,, \emph{Nonlinear Analysis: Real World Applications}, 12 (2011), 1278.  doi: 10.1016/j.nonrwa.2010.09.023.  Google Scholar

[19]

L. Wang, On a quasilinear Schrödinger-Kirchhoff-type equation with radial potentials,, \emph{Nonlinear Analysis}, 83 (2013), 58.  doi: 10.1016/j.na.2012.12.012.  Google Scholar

[1]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[2]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

[3]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[4]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[5]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[6]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[7]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[8]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[9]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[10]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[11]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[14]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

[15]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[16]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[17]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[18]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[19]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[20]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]