• Previous Article
    Mirror symmetry for a Hessian over-determined problem and its generalization
  • CPAA Home
  • This Issue
  • Next Article
    Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity
November  2014, 13(6): 2289-2303. doi: 10.3934/cpaa.2014.13.2289

Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold

1. 

College of Science, Hohai University, Nanjing, 210098, China, China

Received  September 2013 Revised  January 2014 Published  July 2014

In this paper, we study the existence of positive solution to $p-$Kirchhoff type problem \begin{eqnarray} &(a+\mu(\int_{\mathbb{R}^N}(|\nabla u|^p+V(x)|u|^p)dx)^{\tau})(-\Delta_pu+V(x)|u|^{p-2}u)=|u|^{m-2}u\\ &+\lambda |u|^{q-2}u, \; {\rm in}\; \mathbb{R}^N \\ &u(x)>0, \;\;{\rm in}\;\; \mathbb{R}^N,\;\; u\in W^{1,p}(\mathbb{R}^N), \end{eqnarray} where $a, \mu>0, \tau\ge 0, \lambda\in \mathbb{R} $ and $1 < p < N, p < q < m < p^*=\frac{pN}{N-p}$. The potential $V(x)\in C(\mathbb{R}^N)$ and $0 < \inf_{x\in\mathbb{R}^N}V(x) < \sup_{x\in\mathbb{R}^N}V(x) < \infty$. The existence of solution will be obtained by the Nehari manifold and variational method.
Citation: Caisheng Chen, Qing Yuan. Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2289-2303. doi: 10.3934/cpaa.2014.13.2289
References:
[1]

C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations, 254 (2013), 1977-1991. doi: 10.1016/j.jde.2012.11.013.

[2]

A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potential vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144. doi: 10.4171/JEMS/24.

[3]

A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential and Integral Equations, 18 (2005), 1321-1332.

[4]

M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, 1$^{nd}$ edition, Springer-Verlag, London, 2011. doi: 10.1007/978-0-85729-227-8.

[5]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555.

[6]

J. Byeon and Z. Q. Wang, Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potential, J. Eur. Math. Soc., 8 (2006), 217-228. doi: 10.4171/JEMS/48.

[7]

C. S. Chen, L. Chen and Z. H. Xiu, Existence of nontrivial solutions for singular quasilinear elliptic equations on $\mathbbR^N$, Computers and Mathematics with Applications, 6 (2013), 1909-1919. doi: 10.1016/j.camwa.2013.04.017.

[8]

C. S. Chen and Q. Zhu, Existence of positive solutions to $p-$Kirchhoff-type problem without compactness conditions, Applied Mathematics Letters, 28 (2014), 82-87. doi: 10.1016/j.aml.2013.10.005.

[9]

S. J. Chen and L. Li, Multiple solutions for the nonhomogeneous Kirchhoff equation on $\mathbbR^N$, Nonlinear Analysis: Real World Applications, 14 (2013), 1477-1486. doi: 10.1016/j.nonrwa.2012.10.010.

[10]

C. S. Chen, H. X. Song and Z. H. Xiu, Multiple solutions for $ p-$Kirchhoff equations in $\mathbbR^N$, Nonlinear Analysis, 86 (2013), 146-156. doi: 10.1016/j.na.2013.03.017.

[11]

W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), 283-308. doi: 10.1007/BF00282336.

[12]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics Vol.19, $1^{nd}$ edition, American Mathematical Society, Providence, 1998.

[13]

Y. H. Li, F. Y. Li and J. P. Shi, Existence of positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations, 253 (2012), 2285-2294. doi: 10.1016/j.jde.2012.05.017.

[14]

Y. Li, Z. Q. Wang and J. Zeng, Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Linéire, 23 (2006), 829-837. doi: 10.1016/j.anihpc.2006.01.003.

[15]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.

[16]

W. Liu and X. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations, J. Appl. Math. Comput., 39 (2012), 473-487. doi: 10.1007/s12190-012-0536-1.

[17]

J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential, Nonlinear Analysis, 75 (2012), 3470-3479. doi: 10.1016/j.na.2012.01.004.

[18]

X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbbR^N$, Nonlinear Analysis: Real World Applications, 12 (2011), 1278-1287. doi: 10.1016/j.nonrwa.2010.09.023.

[19]

L. Wang, On a quasilinear Schrödinger-Kirchhoff-type equation with radial potentials, Nonlinear Analysis, 83 (2013), 58-68. doi: 10.1016/j.na.2012.12.012.

show all references

References:
[1]

C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations, 254 (2013), 1977-1991. doi: 10.1016/j.jde.2012.11.013.

[2]

A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potential vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144. doi: 10.4171/JEMS/24.

[3]

A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential and Integral Equations, 18 (2005), 1321-1332.

[4]

M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, 1$^{nd}$ edition, Springer-Verlag, London, 2011. doi: 10.1007/978-0-85729-227-8.

[5]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555.

[6]

J. Byeon and Z. Q. Wang, Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potential, J. Eur. Math. Soc., 8 (2006), 217-228. doi: 10.4171/JEMS/48.

[7]

C. S. Chen, L. Chen and Z. H. Xiu, Existence of nontrivial solutions for singular quasilinear elliptic equations on $\mathbbR^N$, Computers and Mathematics with Applications, 6 (2013), 1909-1919. doi: 10.1016/j.camwa.2013.04.017.

[8]

C. S. Chen and Q. Zhu, Existence of positive solutions to $p-$Kirchhoff-type problem without compactness conditions, Applied Mathematics Letters, 28 (2014), 82-87. doi: 10.1016/j.aml.2013.10.005.

[9]

S. J. Chen and L. Li, Multiple solutions for the nonhomogeneous Kirchhoff equation on $\mathbbR^N$, Nonlinear Analysis: Real World Applications, 14 (2013), 1477-1486. doi: 10.1016/j.nonrwa.2012.10.010.

[10]

C. S. Chen, H. X. Song and Z. H. Xiu, Multiple solutions for $ p-$Kirchhoff equations in $\mathbbR^N$, Nonlinear Analysis, 86 (2013), 146-156. doi: 10.1016/j.na.2013.03.017.

[11]

W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), 283-308. doi: 10.1007/BF00282336.

[12]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics Vol.19, $1^{nd}$ edition, American Mathematical Society, Providence, 1998.

[13]

Y. H. Li, F. Y. Li and J. P. Shi, Existence of positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations, 253 (2012), 2285-2294. doi: 10.1016/j.jde.2012.05.017.

[14]

Y. Li, Z. Q. Wang and J. Zeng, Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Linéire, 23 (2006), 829-837. doi: 10.1016/j.anihpc.2006.01.003.

[15]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.

[16]

W. Liu and X. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations, J. Appl. Math. Comput., 39 (2012), 473-487. doi: 10.1007/s12190-012-0536-1.

[17]

J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential, Nonlinear Analysis, 75 (2012), 3470-3479. doi: 10.1016/j.na.2012.01.004.

[18]

X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbbR^N$, Nonlinear Analysis: Real World Applications, 12 (2011), 1278-1287. doi: 10.1016/j.nonrwa.2010.09.023.

[19]

L. Wang, On a quasilinear Schrödinger-Kirchhoff-type equation with radial potentials, Nonlinear Analysis, 83 (2013), 58-68. doi: 10.1016/j.na.2012.12.012.

[1]

Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857

[2]

Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813

[3]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[4]

Ogabi Chokri. On the $L^p-$ theory of Anisotropic singular perturbations of elliptic problems. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1157-1178. doi: 10.3934/cpaa.2016.15.1157

[5]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[6]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[7]

Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285

[8]

Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252

[9]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 229-243. doi: 10.3934/dcdss.2021029

[10]

Anran Li, Jiabao Su. Multiple nontrivial solutions to a $p$-Kirchhoff equation. Communications on Pure and Applied Analysis, 2016, 15 (1) : 91-102. doi: 10.3934/cpaa.2016.15.91

[11]

Min Liu, Zhongwei Tang. Multiplicity and concentration of solutions for Choquard equation via Nehari method and pseudo-index theory. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3365-3398. doi: 10.3934/dcds.2019139

[12]

Xianling Fan, Yuanzhang Zhao, Guifang Huang. Existence of solutions for the $p-$Laplacian with crossing nonlinearity. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 1019-1024. doi: 10.3934/dcds.2002.8.1019

[13]

Leandro M. Del Pezzo, Julio D. Rossi. Eigenvalues for a nonlocal pseudo $p-$Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6737-6765. doi: 10.3934/dcds.2016093

[14]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[15]

Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883

[16]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

[17]

Julián Fernández Bonder, Leandro M. Del Pezzo. An optimization problem for the first eigenvalue of the $p-$Laplacian plus a potential. Communications on Pure and Applied Analysis, 2006, 5 (4) : 675-690. doi: 10.3934/cpaa.2006.5.675

[18]

Arrigo Cellina. The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4071-4085. doi: 10.3934/dcds.2018177

[19]

Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial and Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183

[20]

Guowei Dai, Ruyun Ma. Unilateral global bifurcation for $p$-Laplacian with non-$p-$1-linearization nonlinearity. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 99-116. doi: 10.3934/dcds.2015.35.99

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]