-
Previous Article
Mirror symmetry for a Hessian over-determined problem and its generalization
- CPAA Home
- This Issue
-
Next Article
Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity
Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold
1. | College of Science, Hohai University, Nanjing, 210098, China, China |
References:
[1] |
C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations, 254 (2013), 1977-1991.
doi: 10.1016/j.jde.2012.11.013. |
[2] |
A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potential vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.
doi: 10.4171/JEMS/24. |
[3] |
A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential and Integral Equations, 18 (2005), 1321-1332. |
[4] |
M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, 1$^{nd}$ edition, Springer-Verlag, London, 2011.
doi: 10.1007/978-0-85729-227-8. |
[5] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[6] |
J. Byeon and Z. Q. Wang, Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potential, J. Eur. Math. Soc., 8 (2006), 217-228.
doi: 10.4171/JEMS/48. |
[7] |
C. S. Chen, L. Chen and Z. H. Xiu, Existence of nontrivial solutions for singular quasilinear elliptic equations on $\mathbbR^N$, Computers and Mathematics with Applications, 6 (2013), 1909-1919.
doi: 10.1016/j.camwa.2013.04.017. |
[8] |
C. S. Chen and Q. Zhu, Existence of positive solutions to $p-$Kirchhoff-type problem without compactness conditions, Applied Mathematics Letters, 28 (2014), 82-87.
doi: 10.1016/j.aml.2013.10.005. |
[9] |
S. J. Chen and L. Li, Multiple solutions for the nonhomogeneous Kirchhoff equation on $\mathbbR^N$, Nonlinear Analysis: Real World Applications, 14 (2013), 1477-1486.
doi: 10.1016/j.nonrwa.2012.10.010. |
[10] |
C. S. Chen, H. X. Song and Z. H. Xiu, Multiple solutions for $ p-$Kirchhoff equations in $\mathbbR^N$, Nonlinear Analysis, 86 (2013), 146-156.
doi: 10.1016/j.na.2013.03.017. |
[11] |
W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), 283-308.
doi: 10.1007/BF00282336. |
[12] |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics Vol.19, $1^{nd}$ edition, American Mathematical Society, Providence, 1998. |
[13] |
Y. H. Li, F. Y. Li and J. P. Shi, Existence of positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations, 253 (2012), 2285-2294.
doi: 10.1016/j.jde.2012.05.017. |
[14] |
Y. Li, Z. Q. Wang and J. Zeng, Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Linéire, 23 (2006), 829-837.
doi: 10.1016/j.anihpc.2006.01.003. |
[15] |
P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283. |
[16] |
W. Liu and X. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations, J. Appl. Math. Comput., 39 (2012), 473-487.
doi: 10.1007/s12190-012-0536-1. |
[17] |
J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential, Nonlinear Analysis, 75 (2012), 3470-3479.
doi: 10.1016/j.na.2012.01.004. |
[18] |
X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbbR^N$, Nonlinear Analysis: Real World Applications, 12 (2011), 1278-1287.
doi: 10.1016/j.nonrwa.2010.09.023. |
[19] |
L. Wang, On a quasilinear Schrödinger-Kirchhoff-type equation with radial potentials, Nonlinear Analysis, 83 (2013), 58-68.
doi: 10.1016/j.na.2012.12.012. |
show all references
References:
[1] |
C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations, 254 (2013), 1977-1991.
doi: 10.1016/j.jde.2012.11.013. |
[2] |
A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potential vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.
doi: 10.4171/JEMS/24. |
[3] |
A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential and Integral Equations, 18 (2005), 1321-1332. |
[4] |
M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, 1$^{nd}$ edition, Springer-Verlag, London, 2011.
doi: 10.1007/978-0-85729-227-8. |
[5] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[6] |
J. Byeon and Z. Q. Wang, Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potential, J. Eur. Math. Soc., 8 (2006), 217-228.
doi: 10.4171/JEMS/48. |
[7] |
C. S. Chen, L. Chen and Z. H. Xiu, Existence of nontrivial solutions for singular quasilinear elliptic equations on $\mathbbR^N$, Computers and Mathematics with Applications, 6 (2013), 1909-1919.
doi: 10.1016/j.camwa.2013.04.017. |
[8] |
C. S. Chen and Q. Zhu, Existence of positive solutions to $p-$Kirchhoff-type problem without compactness conditions, Applied Mathematics Letters, 28 (2014), 82-87.
doi: 10.1016/j.aml.2013.10.005. |
[9] |
S. J. Chen and L. Li, Multiple solutions for the nonhomogeneous Kirchhoff equation on $\mathbbR^N$, Nonlinear Analysis: Real World Applications, 14 (2013), 1477-1486.
doi: 10.1016/j.nonrwa.2012.10.010. |
[10] |
C. S. Chen, H. X. Song and Z. H. Xiu, Multiple solutions for $ p-$Kirchhoff equations in $\mathbbR^N$, Nonlinear Analysis, 86 (2013), 146-156.
doi: 10.1016/j.na.2013.03.017. |
[11] |
W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), 283-308.
doi: 10.1007/BF00282336. |
[12] |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics Vol.19, $1^{nd}$ edition, American Mathematical Society, Providence, 1998. |
[13] |
Y. H. Li, F. Y. Li and J. P. Shi, Existence of positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations, 253 (2012), 2285-2294.
doi: 10.1016/j.jde.2012.05.017. |
[14] |
Y. Li, Z. Q. Wang and J. Zeng, Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Linéire, 23 (2006), 829-837.
doi: 10.1016/j.anihpc.2006.01.003. |
[15] |
P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283. |
[16] |
W. Liu and X. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations, J. Appl. Math. Comput., 39 (2012), 473-487.
doi: 10.1007/s12190-012-0536-1. |
[17] |
J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential, Nonlinear Analysis, 75 (2012), 3470-3479.
doi: 10.1016/j.na.2012.01.004. |
[18] |
X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbbR^N$, Nonlinear Analysis: Real World Applications, 12 (2011), 1278-1287.
doi: 10.1016/j.nonrwa.2010.09.023. |
[19] |
L. Wang, On a quasilinear Schrödinger-Kirchhoff-type equation with radial potentials, Nonlinear Analysis, 83 (2013), 58-68.
doi: 10.1016/j.na.2012.12.012. |
[1] |
Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857 |
[2] |
Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813 |
[3] |
Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108 |
[4] |
Ogabi Chokri. On the $L^p-$ theory of Anisotropic singular perturbations of elliptic problems. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1157-1178. doi: 10.3934/cpaa.2016.15.1157 |
[5] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[6] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[7] |
Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285 |
[8] |
Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252 |
[9] |
Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 229-243. doi: 10.3934/dcdss.2021029 |
[10] |
Anran Li, Jiabao Su. Multiple nontrivial solutions to a $p$-Kirchhoff equation. Communications on Pure and Applied Analysis, 2016, 15 (1) : 91-102. doi: 10.3934/cpaa.2016.15.91 |
[11] |
Min Liu, Zhongwei Tang. Multiplicity and concentration of solutions for Choquard equation via Nehari method and pseudo-index theory. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3365-3398. doi: 10.3934/dcds.2019139 |
[12] |
Xianling Fan, Yuanzhang Zhao, Guifang Huang. Existence of solutions for the $p-$Laplacian with crossing nonlinearity. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 1019-1024. doi: 10.3934/dcds.2002.8.1019 |
[13] |
Leandro M. Del Pezzo, Julio D. Rossi. Eigenvalues for a nonlocal pseudo $p-$Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6737-6765. doi: 10.3934/dcds.2016093 |
[14] |
Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089 |
[15] |
Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883 |
[16] |
A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419 |
[17] |
Julián Fernández Bonder, Leandro M. Del Pezzo. An optimization problem for the first eigenvalue of the $p-$Laplacian plus a potential. Communications on Pure and Applied Analysis, 2006, 5 (4) : 675-690. doi: 10.3934/cpaa.2006.5.675 |
[18] |
Arrigo Cellina. The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4071-4085. doi: 10.3934/dcds.2018177 |
[19] |
Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial and Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183 |
[20] |
Guowei Dai, Ruyun Ma. Unilateral global bifurcation for $p$-Laplacian with non-$p-$1-linearization nonlinearity. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 99-116. doi: 10.3934/dcds.2015.35.99 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]