\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold

Abstract Related Papers Cited by
  • In this paper, we study the existence of positive solution to $p-$Kirchhoff type problem \begin{eqnarray} &(a+\mu(\int_{\mathbb{R}^N}(|\nabla u|^p+V(x)|u|^p)dx)^{\tau})(-\Delta_pu+V(x)|u|^{p-2}u)=|u|^{m-2}u\\ &+\lambda |u|^{q-2}u, \; {\rm in}\; \mathbb{R}^N \\ &u(x)>0, \;\;{\rm in}\;\; \mathbb{R}^N,\;\; u\in W^{1,p}(\mathbb{R}^N), \end{eqnarray} where $a, \mu>0, \tau\ge 0, \lambda\in \mathbb{R} $ and $1 < p < N, p < q < m < p^*=\frac{pN}{N-p}$. The potential $V(x)\in C(\mathbb{R}^N)$ and $0 < \inf_{x\in\mathbb{R}^N}V(x) < \sup_{x\in\mathbb{R}^N}V(x) < \infty$. The existence of solution will be obtained by the Nehari manifold and variational method.
    Mathematics Subject Classification: 35J50, 35J75, 35J92.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations, 254 (2013), 1977-1991.doi: 10.1016/j.jde.2012.11.013.

    [2]

    A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potential vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.doi: 10.4171/JEMS/24.

    [3]

    A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential and Integral Equations, 18 (2005), 1321-1332.

    [4]

    M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, 1$^{nd}$ edition, Springer-Verlag, London, 2011.doi: 10.1007/978-0-85729-227-8.

    [5]

    H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.doi: 10.1007/BF00250555.

    [6]

    J. Byeon and Z. Q. Wang, Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potential, J. Eur. Math. Soc., 8 (2006), 217-228.doi: 10.4171/JEMS/48.

    [7]

    C. S. Chen, L. Chen and Z. H. Xiu, Existence of nontrivial solutions for singular quasilinear elliptic equations on $\mathbbR^N$, Computers and Mathematics with Applications, 6 (2013), 1909-1919.doi: 10.1016/j.camwa.2013.04.017.

    [8]

    C. S. Chen and Q. Zhu, Existence of positive solutions to $p-$Kirchhoff-type problem without compactness conditions, Applied Mathematics Letters, 28 (2014), 82-87.doi: 10.1016/j.aml.2013.10.005.

    [9]

    S. J. Chen and L. Li, Multiple solutions for the nonhomogeneous Kirchhoff equation on $\mathbbR^N$, Nonlinear Analysis: Real World Applications, 14 (2013), 1477-1486.doi: 10.1016/j.nonrwa.2012.10.010.

    [10]

    C. S. Chen, H. X. Song and Z. H. Xiu, Multiple solutions for $ p-$Kirchhoff equations in $\mathbbR^N$, Nonlinear Analysis, 86 (2013), 146-156.doi: 10.1016/j.na.2013.03.017.

    [11]

    W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), 283-308.doi: 10.1007/BF00282336.

    [12]

    L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics Vol.19, $1^{nd}$ edition, American Mathematical Society, Providence, 1998.

    [13]

    Y. H. Li, F. Y. Li and J. P. Shi, Existence of positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations, 253 (2012), 2285-2294.doi: 10.1016/j.jde.2012.05.017.

    [14]

    Y. Li, Z. Q. Wang and J. Zeng, Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Linéire, 23 (2006), 829-837.doi: 10.1016/j.anihpc.2006.01.003.

    [15]

    P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.

    [16]

    W. Liu and X. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations, J. Appl. Math. Comput., 39 (2012), 473-487.doi: 10.1007/s12190-012-0536-1.

    [17]

    J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential, Nonlinear Analysis, 75 (2012), 3470-3479.doi: 10.1016/j.na.2012.01.004.

    [18]

    X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbbR^N$, Nonlinear Analysis: Real World Applications, 12 (2011), 1278-1287.doi: 10.1016/j.nonrwa.2010.09.023.

    [19]

    L. Wang, On a quasilinear Schrödinger-Kirchhoff-type equation with radial potentials, Nonlinear Analysis, 83 (2013), 58-68.doi: 10.1016/j.na.2012.12.012.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return