November  2014, 13(6): 2331-2350. doi: 10.3934/cpaa.2014.13.2331

Vanishing viscosity limit to rarefaction waves for the full compressible fluid models of Korteweg type

1. 

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

2. 

School of Mathematics and Center for Nonlinear Studies, Northwest University, Xi'an 710127, China

Received  October 2013 Revised  April 2014 Published  July 2014

We prove the solution of the full compressible fluid models of Korteweg type with centered rarefaction wave data of large strength exists globally in time. As the viscosity, heat-conductivity and capillary coefficients tend to zero, the global solution converges to the centered rarefaction wave solution of the corresponding Euler equations uniformly when the initial perturbation is small. Our analysis is based on the energy method.
Citation: Wenjun Wang, Lei Yao. Vanishing viscosity limit to rarefaction waves for the full compressible fluid models of Korteweg type. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2331-2350. doi: 10.3934/cpaa.2014.13.2331
References:
[1]

D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems,, Comm. Partial Differential Equations, 28 (2003), 843.  doi: 10.1081/PDE-120020499.  Google Scholar

[2]

Z. Z. Chen, Asymptotic stability of strong rarefaction waves for the compressible fluid models of Korteweg type,, J. Math. Anal. Appl., 394 (2012), 438.  doi: 10.1016/j.jmaa.2012.04.008.  Google Scholar

[3]

Z. Z. Chen and Q. H. Xiao, Nonlinear stability of viscous contact wave for the one-dimensional compressible fluid models of Korteweg type,, Math. Methods Appl. Sci., 36 (2013), 2265.  doi: 10.1002/mma.2750.  Google Scholar

[4]

Z. Z. Chen and H. J. Zhao, Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system,, J. Math. Pures Appl., 101 (2014), 330.  doi: 10.1016/j.matpur.2013.06.005.  Google Scholar

[5]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 97.  doi: 10.1016/S0294-1449(00)00056-1.  Google Scholar

[6]

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working,, Arch. Rational Mech. Anal., 88 (1985), 95.  doi: 10.1007/BF00250907.  Google Scholar

[7]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type,, J. Math. Fluid Mech., 13 (2011), 223.  doi: 10.1007/s00021-009-0013-2.  Google Scholar

[8]

H. Hattori and D. Li, Solutions for two dimensional system for materials of Korteweg type,, SIAM J. Math. Anal., 25 (1994), 85.  doi: 10.1137/S003614109223413X.  Google Scholar

[9]

H. Hattori and D. Li, Global solutions of a high dimensional system for Korteweg materials,, J. Math. Anal. Appl., 198 (1996), 84.  doi: 10.1006/jmaa.1996.0069.  Google Scholar

[10]

H. Hattori and D. Li, The existence of global solutions to a fluid dynamic model for materials for Korteweg type,, J. Partial Differential Equations, 9 (1996), 323.   Google Scholar

[11]

F. M. Huang, M. J. Li and Y. Wang, Zero dissipation limit to rarefaction wave with vacuum for one-dimensional compressible Navier-Stokes equations,, SIAM J. Math. Anal., 44 (2012), 1742.  doi: 10.1137/100814305.  Google Scholar

[12]

S. Jiang, G. X. Ni and W. J. Sun, Vanishing viscosity limit to rarefaction waves for the Navier-Stokes Equations of one-dimensional compressible heat-conducting fluids,, SIAM J. Math. Anal., 38 (2006), 368.  doi: 10.1137/050626478.  Google Scholar

[13]

S. Kawashima, A. Matsumura and K. Nishihara, Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas,, Proc. Japan Acad. Ser. A Math. Sci., 62 (1986), 249.   Google Scholar

[14]

D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité,, Archives Néerlandaises de Sciences Exactes et Naturelles II}, 6 (1901), 1.   Google Scholar

[15]

M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 679.  doi: 10.1016/j.anihpc.2007.03.005.  Google Scholar

[16]

Y. P. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force,, J. Math. Anal. Appl., 388 (2012), 1218.  doi: 10.1016/j.jmaa.2011.11.006.  Google Scholar

[17]

A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas,, Japan J. Appl. Math., 3 (1986), 1.  doi: 10.1007/BF03167088.  Google Scholar

[18]

Y. J. Meng and L. Ding, Convergence to the rarefaction waves for the 1D compressible fluid models of Korteweg type,, preprint, (2013).   Google Scholar

[19]

K. Nishihara, T. Yang and H. J. Zhao, Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations,, SIAM J. Math. Anal., 35 (2004), 1561.  doi: 10.1137/S003614100342735X.  Google Scholar

[20]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, 2nd edition, (1994).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[21]

Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type,, J. Math. Anal. Appl., 379 (2011), 256.  doi: 10.1016/j.jmaa.2011.01.006.  Google Scholar

[22]

Z. Xin, Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases,, Comm. Pure Appl. Math., 46 (1993), 621.  doi: 10.1002/cpa.3160460502.  Google Scholar

show all references

References:
[1]

D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems,, Comm. Partial Differential Equations, 28 (2003), 843.  doi: 10.1081/PDE-120020499.  Google Scholar

[2]

Z. Z. Chen, Asymptotic stability of strong rarefaction waves for the compressible fluid models of Korteweg type,, J. Math. Anal. Appl., 394 (2012), 438.  doi: 10.1016/j.jmaa.2012.04.008.  Google Scholar

[3]

Z. Z. Chen and Q. H. Xiao, Nonlinear stability of viscous contact wave for the one-dimensional compressible fluid models of Korteweg type,, Math. Methods Appl. Sci., 36 (2013), 2265.  doi: 10.1002/mma.2750.  Google Scholar

[4]

Z. Z. Chen and H. J. Zhao, Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system,, J. Math. Pures Appl., 101 (2014), 330.  doi: 10.1016/j.matpur.2013.06.005.  Google Scholar

[5]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 97.  doi: 10.1016/S0294-1449(00)00056-1.  Google Scholar

[6]

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working,, Arch. Rational Mech. Anal., 88 (1985), 95.  doi: 10.1007/BF00250907.  Google Scholar

[7]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type,, J. Math. Fluid Mech., 13 (2011), 223.  doi: 10.1007/s00021-009-0013-2.  Google Scholar

[8]

H. Hattori and D. Li, Solutions for two dimensional system for materials of Korteweg type,, SIAM J. Math. Anal., 25 (1994), 85.  doi: 10.1137/S003614109223413X.  Google Scholar

[9]

H. Hattori and D. Li, Global solutions of a high dimensional system for Korteweg materials,, J. Math. Anal. Appl., 198 (1996), 84.  doi: 10.1006/jmaa.1996.0069.  Google Scholar

[10]

H. Hattori and D. Li, The existence of global solutions to a fluid dynamic model for materials for Korteweg type,, J. Partial Differential Equations, 9 (1996), 323.   Google Scholar

[11]

F. M. Huang, M. J. Li and Y. Wang, Zero dissipation limit to rarefaction wave with vacuum for one-dimensional compressible Navier-Stokes equations,, SIAM J. Math. Anal., 44 (2012), 1742.  doi: 10.1137/100814305.  Google Scholar

[12]

S. Jiang, G. X. Ni and W. J. Sun, Vanishing viscosity limit to rarefaction waves for the Navier-Stokes Equations of one-dimensional compressible heat-conducting fluids,, SIAM J. Math. Anal., 38 (2006), 368.  doi: 10.1137/050626478.  Google Scholar

[13]

S. Kawashima, A. Matsumura and K. Nishihara, Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas,, Proc. Japan Acad. Ser. A Math. Sci., 62 (1986), 249.   Google Scholar

[14]

D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité,, Archives Néerlandaises de Sciences Exactes et Naturelles II}, 6 (1901), 1.   Google Scholar

[15]

M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 679.  doi: 10.1016/j.anihpc.2007.03.005.  Google Scholar

[16]

Y. P. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force,, J. Math. Anal. Appl., 388 (2012), 1218.  doi: 10.1016/j.jmaa.2011.11.006.  Google Scholar

[17]

A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas,, Japan J. Appl. Math., 3 (1986), 1.  doi: 10.1007/BF03167088.  Google Scholar

[18]

Y. J. Meng and L. Ding, Convergence to the rarefaction waves for the 1D compressible fluid models of Korteweg type,, preprint, (2013).   Google Scholar

[19]

K. Nishihara, T. Yang and H. J. Zhao, Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations,, SIAM J. Math. Anal., 35 (2004), 1561.  doi: 10.1137/S003614100342735X.  Google Scholar

[20]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, 2nd edition, (1994).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[21]

Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type,, J. Math. Anal. Appl., 379 (2011), 256.  doi: 10.1016/j.jmaa.2011.01.006.  Google Scholar

[22]

Z. Xin, Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases,, Comm. Pure Appl. Math., 46 (1993), 621.  doi: 10.1002/cpa.3160460502.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[7]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[8]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[9]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[10]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[15]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[16]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[17]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[18]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[19]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[20]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]