November  2014, 13(6): 2351-2358. doi: 10.3934/cpaa.2014.13.2351

Finite speed of propagation for mixed problems in the $WR$ class

1. 

Université de Nantes, Laboratoire de Mathématiques Jean Leray (CNRS UMR6629), 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France

Received  October 2013 Revised  March 2014 Published  July 2014

In this article we are interested in the propagation speed for solutions of hyperbolic boundary value problems in the $WR$ class. Using the Holmgren principle, we show that this speed is finite and we are able to give an explicit expression for the maximal speed. Due to a propagation phenomenon along the boundary that is specific to the $WR$ class, the maximal speed can be larger than the propagation speed for the Cauchy problem. This is consistent with previous examples of the litterature.
Citation: Antoine Benoit. Finite speed of propagation for mixed problems in the $WR$ class. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2351-2358. doi: 10.3934/cpaa.2014.13.2351
References:
[1]

S. Benzoni-Gavage, F. Rousset, D. Serre and K. Zumbrun, Generic types and transitions in hyperbolic initial-boundary-value problems,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 5 (2002), 1073.  doi: 10.1017/S030821050000202X.  Google Scholar

[2]

S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations,, Oxford Mathematical Monographs, (2007).   Google Scholar

[3]

A. Chazarain and J. Piriou, Caractérisation des problèmes mixtes hyperboliques bien posés differentiables,, (French) [Characterization of well-posed mixed hyperbolic mixed problems.], 22 (1972), 193.   Google Scholar

[4]

A. Chazarain and J. Piriou, Introduction à la théorie des équations aux dérivées partielles linéaires,, (French) [Introduction to the theory of linear partial differential equations.], ().   Google Scholar

[5]

J.-F. Coulombel, Well-posedness of hyperbolic initial boundary value problems,, \emph{J. Math. Pures Appl.}, 84 (2005), 786.  doi: 10.1016/j.matpur.2004.10.005.  Google Scholar

[6]

J.-F. Coulombel and O. Guès, Geometric optics expansions with amplification for hyperbolic boundary value problems: linear problems,, \emph{Ann. Inst. Fourier (Grenoble)}, 60 (2010), 2183.   Google Scholar

[7]

M. Ikawa, Mixed problem for the wave equation with an oblique derivative boundary condition,, \emph{Osaka J. Math.}, 7 (1970), 495.   Google Scholar

[8]

H.-O. Kreiss, Initial boundary value problems for hyperbolic systems,, \emph{Comm. Pure Appl. Math.}, 23 (1970), 277.   Google Scholar

[9]

G. Métivier, The block structure condition for symmetric hyperbolic systems,, \emph{Bull. London Math. Soc.}, 32 (2000), 689.  doi: 10.1112/S0024609300007517.  Google Scholar

[10]

A. Morando and P. Secchi, Regularity of weakly well posed hyperbolic mixed problems with characteristic boundary,, \emph{J. Hyperbolic Differ. Equ.}, 8 (2011), 37.  doi: 10.1142/S021989161100238X.  Google Scholar

[11]

J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics,, American Mathematical Society, (2012).   Google Scholar

[12]

M. Sablé-Tougeron, Existence pour un problème de l'élastodynamique Neumann non linéaire en dimension $2$,, (French) [Existence for a non-linear elastodynamic Neumann problem in $2$ dimensions], 101 (1988), 261.  doi: 10.1007/BF00253123.  Google Scholar

[13]

T. Shirota, On the propagation speed of hyperbolic operator with mixed boundary conditions,, \emph{J. Fac. Sci. Hokkaido Univ. Ser. I}, 22 (1972), 25.   Google Scholar

show all references

References:
[1]

S. Benzoni-Gavage, F. Rousset, D. Serre and K. Zumbrun, Generic types and transitions in hyperbolic initial-boundary-value problems,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 5 (2002), 1073.  doi: 10.1017/S030821050000202X.  Google Scholar

[2]

S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations,, Oxford Mathematical Monographs, (2007).   Google Scholar

[3]

A. Chazarain and J. Piriou, Caractérisation des problèmes mixtes hyperboliques bien posés differentiables,, (French) [Characterization of well-posed mixed hyperbolic mixed problems.], 22 (1972), 193.   Google Scholar

[4]

A. Chazarain and J. Piriou, Introduction à la théorie des équations aux dérivées partielles linéaires,, (French) [Introduction to the theory of linear partial differential equations.], ().   Google Scholar

[5]

J.-F. Coulombel, Well-posedness of hyperbolic initial boundary value problems,, \emph{J. Math. Pures Appl.}, 84 (2005), 786.  doi: 10.1016/j.matpur.2004.10.005.  Google Scholar

[6]

J.-F. Coulombel and O. Guès, Geometric optics expansions with amplification for hyperbolic boundary value problems: linear problems,, \emph{Ann. Inst. Fourier (Grenoble)}, 60 (2010), 2183.   Google Scholar

[7]

M. Ikawa, Mixed problem for the wave equation with an oblique derivative boundary condition,, \emph{Osaka J. Math.}, 7 (1970), 495.   Google Scholar

[8]

H.-O. Kreiss, Initial boundary value problems for hyperbolic systems,, \emph{Comm. Pure Appl. Math.}, 23 (1970), 277.   Google Scholar

[9]

G. Métivier, The block structure condition for symmetric hyperbolic systems,, \emph{Bull. London Math. Soc.}, 32 (2000), 689.  doi: 10.1112/S0024609300007517.  Google Scholar

[10]

A. Morando and P. Secchi, Regularity of weakly well posed hyperbolic mixed problems with characteristic boundary,, \emph{J. Hyperbolic Differ. Equ.}, 8 (2011), 37.  doi: 10.1142/S021989161100238X.  Google Scholar

[11]

J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics,, American Mathematical Society, (2012).   Google Scholar

[12]

M. Sablé-Tougeron, Existence pour un problème de l'élastodynamique Neumann non linéaire en dimension $2$,, (French) [Existence for a non-linear elastodynamic Neumann problem in $2$ dimensions], 101 (1988), 261.  doi: 10.1007/BF00253123.  Google Scholar

[13]

T. Shirota, On the propagation speed of hyperbolic operator with mixed boundary conditions,, \emph{J. Fac. Sci. Hokkaido Univ. Ser. I}, 22 (1972), 25.   Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[3]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[7]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[8]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[9]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[10]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[11]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[12]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[13]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[14]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[15]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[18]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[20]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]