November  2014, 13(6): 2377-2394. doi: 10.3934/cpaa.2014.13.2377

On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping

1. 

Laboratoire de Mathématiques et Physique Théorique, UMR 7350, Tours, France

Received  October 2013 Revised  May 2014 Published  July 2014

We consider the Cauchy problem for the $L^2$-critical nonlinear Schrödinger equation with a nonlinear damping. According to the power of the damping term, we prove the global existence or the existence of finite time blowup dynamics with the log-log blow-up speed for $\|\nabla u(t)\|_{L^2}$.
Citation: Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377
References:
[1]

P. Antonelli and C. Sparber, Global well-posedness for cubic NLS with nonlinear damping, Comm. Partial Differential Equations, 35 (2010), 4832-4845. doi: 10.1080/03605300903540943.  Google Scholar

[2]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375. doi: 10.1007/BF00250556.  Google Scholar

[3]

T. Cazenave, Semilinear Schrödinger Equations, volume 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 2003.  Google Scholar

[4]

T. Cazenave and F. Weissler, Some remarks on the nonlinear Schrödinger equation in the subcritical case, in New Methods and Results in Nonlinear Field Equations (Bielefeld, 1987), 59-69, Lecture Notes in Phys., 347, Springer, Berlin, 1989. doi: 10.1007/BFb0025761.  Google Scholar

[5]

J. Colliander and P. Raphael, Rough blowup solutions to the $L^2$ critical NLS, Math. Ann., 345 (2009), 307-366. doi: 10.1007/s00208-009-0355-3.  Google Scholar

[6]

M. Darwich, Blowup for the Damped $L^2$critical nonlinear Shrödinger equations, Advances in Differential Equations, 17 (2012), 337-367.  Google Scholar

[7]

G. Fibich and F. Merle, Self-focusing on bounded domains, Phys. D, 155 (2001), 132-158. doi: 10.1016/S0167-2789(01)00249-4.  Google Scholar

[8]

G. Fibich and M. Klein, Nonlinear-damping continuation of the nonlinear Schrödinger equation-a numerical study, Physica D, 241 (2012), 519-527. doi: 10.1016/j.physd.2011.11.008.  Google Scholar

[9]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. Google Scholar

[10]

T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not., 46 (2005), 2815-2828. doi: 10.1155/IMRN.2005.2815.  Google Scholar

[11]

T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 46 (1987), 113-129.  Google Scholar

[12]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $R^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266. doi: 10.1007/BF00251502.  Google Scholar

[13]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.  Google Scholar

[14]

F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schröinger equations with critical power, Duke Math. J., 69 (1993), 427-454. doi: 10.1215/S0012-7094-93-06919-0.  Google Scholar

[15]

F. Merle and P. Raphael, Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, In Journées "Équations aux Dérivées Partielles'' (Forges-les-Eaux, 2002), pages Exp. No. XII, 5. Univ. Nantes, Nantes, 2002.  Google Scholar

[16]

F. Merle and P. Raphael, Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal., 13 (2003), 591-642. doi: 10.1007/s00039-003-0424-9.  Google Scholar

[17]

F. Merle and P. Raphael, On universality of blow-up profile for $L^2$ critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565-672. doi: 10.1007/s00222-003-0346-z.  Google Scholar

[18]

F. Merle and P. Raphael, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys., 253 (2005), 675-704. doi: 10.1007/s00220-004-1198-0.  Google Scholar

[19]

F. Merle and P. Raphael, On a sharp lower bound on the blow-up rate for the $L^2$ critical nonlinear Schrödinger equation, J. Amer. Math. Soc., 19 (2006), 37-90 (electronic). doi: 10.1090/S0894-0347-05-00499-6.  Google Scholar

[20]

M. Ohta and G. Todorova, Remarks on global existence and blowup for damped nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 23 (2009), 1313-1325. doi: 10.3934/dcds.2009.23.1313.  Google Scholar

[21]

T. Passota, C. Sulemb and P. L. Sulem, Linear versus nonlinear dissipation for critical NLS equation, Physica D, 203 (2005), 167-184. doi: 10.1016/j.physd.2005.03.011.  Google Scholar

[22]

F. Planchon and P. Raphaël, Existence and stability of the log-log blow-up dynamics for the $L^2$-critical nonlinear Schrödinger equation in a domain, Ann. Henri Poincaré, 8 (2007), 1177-1219. doi: 10.1007/s00023-007-0332-x.  Google Scholar

[23]

P. Raphael, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann., 331 (2005), 577-609. doi: 10.1007/s00208-004-0596-0.  Google Scholar

[24]

M. Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger equations, SIAM J. Math. Anal., 15 (1984), 357-366. doi: 10.1137/0515028.  Google Scholar

[25]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, \emph{Comm. Math. Phys.}, 87 (): 567.   Google Scholar

show all references

References:
[1]

P. Antonelli and C. Sparber, Global well-posedness for cubic NLS with nonlinear damping, Comm. Partial Differential Equations, 35 (2010), 4832-4845. doi: 10.1080/03605300903540943.  Google Scholar

[2]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375. doi: 10.1007/BF00250556.  Google Scholar

[3]

T. Cazenave, Semilinear Schrödinger Equations, volume 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 2003.  Google Scholar

[4]

T. Cazenave and F. Weissler, Some remarks on the nonlinear Schrödinger equation in the subcritical case, in New Methods and Results in Nonlinear Field Equations (Bielefeld, 1987), 59-69, Lecture Notes in Phys., 347, Springer, Berlin, 1989. doi: 10.1007/BFb0025761.  Google Scholar

[5]

J. Colliander and P. Raphael, Rough blowup solutions to the $L^2$ critical NLS, Math. Ann., 345 (2009), 307-366. doi: 10.1007/s00208-009-0355-3.  Google Scholar

[6]

M. Darwich, Blowup for the Damped $L^2$critical nonlinear Shrödinger equations, Advances in Differential Equations, 17 (2012), 337-367.  Google Scholar

[7]

G. Fibich and F. Merle, Self-focusing on bounded domains, Phys. D, 155 (2001), 132-158. doi: 10.1016/S0167-2789(01)00249-4.  Google Scholar

[8]

G. Fibich and M. Klein, Nonlinear-damping continuation of the nonlinear Schrödinger equation-a numerical study, Physica D, 241 (2012), 519-527. doi: 10.1016/j.physd.2011.11.008.  Google Scholar

[9]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. Google Scholar

[10]

T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not., 46 (2005), 2815-2828. doi: 10.1155/IMRN.2005.2815.  Google Scholar

[11]

T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 46 (1987), 113-129.  Google Scholar

[12]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $R^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266. doi: 10.1007/BF00251502.  Google Scholar

[13]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.  Google Scholar

[14]

F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schröinger equations with critical power, Duke Math. J., 69 (1993), 427-454. doi: 10.1215/S0012-7094-93-06919-0.  Google Scholar

[15]

F. Merle and P. Raphael, Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, In Journées "Équations aux Dérivées Partielles'' (Forges-les-Eaux, 2002), pages Exp. No. XII, 5. Univ. Nantes, Nantes, 2002.  Google Scholar

[16]

F. Merle and P. Raphael, Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal., 13 (2003), 591-642. doi: 10.1007/s00039-003-0424-9.  Google Scholar

[17]

F. Merle and P. Raphael, On universality of blow-up profile for $L^2$ critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565-672. doi: 10.1007/s00222-003-0346-z.  Google Scholar

[18]

F. Merle and P. Raphael, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys., 253 (2005), 675-704. doi: 10.1007/s00220-004-1198-0.  Google Scholar

[19]

F. Merle and P. Raphael, On a sharp lower bound on the blow-up rate for the $L^2$ critical nonlinear Schrödinger equation, J. Amer. Math. Soc., 19 (2006), 37-90 (electronic). doi: 10.1090/S0894-0347-05-00499-6.  Google Scholar

[20]

M. Ohta and G. Todorova, Remarks on global existence and blowup for damped nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 23 (2009), 1313-1325. doi: 10.3934/dcds.2009.23.1313.  Google Scholar

[21]

T. Passota, C. Sulemb and P. L. Sulem, Linear versus nonlinear dissipation for critical NLS equation, Physica D, 203 (2005), 167-184. doi: 10.1016/j.physd.2005.03.011.  Google Scholar

[22]

F. Planchon and P. Raphaël, Existence and stability of the log-log blow-up dynamics for the $L^2$-critical nonlinear Schrödinger equation in a domain, Ann. Henri Poincaré, 8 (2007), 1177-1219. doi: 10.1007/s00023-007-0332-x.  Google Scholar

[23]

P. Raphael, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann., 331 (2005), 577-609. doi: 10.1007/s00208-004-0596-0.  Google Scholar

[24]

M. Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger equations, SIAM J. Math. Anal., 15 (1984), 357-366. doi: 10.1137/0515028.  Google Scholar

[25]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, \emph{Comm. Math. Phys.}, 87 (): 567.   Google Scholar

[1]

Armen Shirikyan. Ergodicity for a class of Markov processes and applications to randomly forced PDE'S. II. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 911-926. doi: 10.3934/dcdsb.2006.6.911

[2]

C*-actions on C^3 are linearizable. S. Kaliman, M. Koras, L. Makar-Limanov and P. Russell. Electronic Research Announcements, 1997, 3: 63-71.

[3]

Tomás Caraballo Garrido, Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Zgurovsky. Preface to the special issue "Dynamics and control in distributed systems: Dedicated to the memory of Valery S. Melnik (1952-2007)". Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : i-v. doi: 10.3934/dcdsb.20193i

[4]

Evgeny Galakhov. Some nonexistence results for quasilinear PDE's. Communications on Pure & Applied Analysis, 2007, 6 (1) : 141-161. doi: 10.3934/cpaa.2007.6.141

[5]

Jayadev S. Athreya, Yitwah Cheung, Howard Masur. Siegel–Veech transforms are in $ \boldsymbol{L^2} $(with an appendix by Jayadev S. Athreya and Rene Rühr). Journal of Modern Dynamics, 2019, 14: 1-19. doi: 10.3934/jmd.2019001

[6]

Ronald Mickens, Kale Oyedeji. Traveling wave solutions to modified Burgers and diffusionless Fisher PDE's. Evolution Equations & Control Theory, 2019, 8 (1) : 139-147. doi: 10.3934/eect.2019008

[7]

Xavier Cabré. Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 425-457. doi: 10.3934/dcds.2008.20.425

[8]

Theodore Kolokolnikov, Juncheng Wei. Hexagonal spike clusters for some PDE's in 2D. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 4057-4070. doi: 10.3934/dcdsb.2020039

[9]

Fatiha Alabau-Boussouira. On the influence of the coupling on the dynamics of single-observed cascade systems of PDE's. Mathematical Control & Related Fields, 2015, 5 (1) : 1-30. doi: 10.3934/mcrf.2015.5.1

[10]

Dario Bambusi, Simone Paleari. Families of periodic orbits for some PDE’s in higher dimensions. Communications on Pure & Applied Analysis, 2002, 1 (2) : 269-279. doi: 10.3934/cpaa.2002.1.269

[11]

Armen Shirikyan, Leonid Volevich. Qualitative properties of solutions for linear and nonlinear hyperbolic PDE's. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 517-542. doi: 10.3934/dcds.2004.10.517

[12]

Yongkuan Cheng, Yaotian Shen. Generalized quasilinear Schrödinger equations with concave functions $ l(s^2) $. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1311-1343. doi: 10.3934/dcds.2019056

[13]

Emmanuel Hebey. The Lin-Ni's conjecture for vector-valued Schrödinger equations in the closed case. Communications on Pure & Applied Analysis, 2010, 9 (4) : 955-962. doi: 10.3934/cpaa.2010.9.955

[14]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[15]

Pierre Frankel. Alternating proximal algorithm with costs-to-move, dual description and application to PDE's. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 545-557. doi: 10.3934/dcdss.2012.5.545

[16]

Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983

[17]

Peng Gao, Yong Li. Averaging principle for the Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2147-2168. doi: 10.3934/dcdsb.2017089

[18]

Elena Cordero, Fabio Nicola, Luigi Rodino. Schrödinger equations with rough Hamiltonians. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4805-4821. doi: 10.3934/dcds.2015.35.4805

[19]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[20]

Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 375-403. doi: 10.3934/dcds.2007.18.375

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]