November  2014, 13(6): 2395-2406. doi: 10.3934/cpaa.2014.13.2395

Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation

1. 

Departamento de Ingeneria Matematica F.C.F.M., Universidad de Chile, Casilla 170 Correro 3, Santiago

2. 

Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático UMR2071 CNRS-UChile, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile

Received  November 2013 Revised  March 2014 Published  July 2014

The aim of this paper is to study radial symmetry properties for ground state solutions of elliptic equations involving a regional fractional Laplacian, namely \begin{eqnarray} (-\Delta)_{\rho}^{\alpha}u + u = f(u) \quad \mbox{in} \ \mathbb{R}^{n}, \ \ \mbox{for} \ \ \alpha\in (0,1). \end{eqnarray} In [9], the authors proved that problem (1) has a ground state solution. In this work we prove that the ground state level is achieved by a radially symmetry solution. The proof is carried out by using variational methods jointly with rearrangement arguments.
Citation: Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395
References:
[1]

F. Almgren and E. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683-773. doi: 10.2307/1990893.

[2]

W. Beckner, Sobolev Inequalities, the Poisson Semigroup and analysis on the sphere $S^n$, Proc. Natl. Acad. Sci., 89 (1992), 4816-4819. doi: 10.1073/pnas.89.11.4816.

[3]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555.

[4]

R. Blumenthal and R. Getoor, Some theorems on stable processes, Trans. Am. Math. Soc., 95 (1960), 263-273.

[5]

K. Bogdan, K. Burdzy and Z. Q. Chen, Censored stable processes, Probab. Theory Relat. Fields, 127 (2003), 89-152. doi: 10.1007/s00440-003-0275-1.

[6]

M. Cheng, ound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012), 043507. doi: 10.1063/1.3701574.

[7]

S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schroinger type problem involving the fractional Laplacian, Le Matematiche, LXVIII (2013), 201-216.

[8]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinguer equation with the fractional laplacian, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 142 (2012), 1237-1262. doi: 10.1017/S0308210511000746.

[9]

P. Felmer and C. Torres, Non-linear Schrödinger equation with non-local regional diffusion,, Preprint., (). 

[10]

Q. Y. Guan, Integration by parts formula for regional fractional Laplacian, Commun. Math. Phys., 266 (2006), 289-329. doi: 10.1007/s00220-006-0054-9.

[11]

H. Ishii and G. Nakamura, A class of integral equations and approximation of p-Laplace equations, Calc. Var., 37 (2010), 485-522. doi: 10.1007/s00526-009-0274-x.

[12]

L. Jeanjean, On the existence of bounded Palais-Smale sequence and application to a Ladesman.Lazer-type problem set on $\mathbbR^n$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809. doi: 10.1017/S0308210500013147.

[13]

B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, Lect. Notes Math., 1150, Springer-Verlag, Berlin (1985).

[14]

S. Kesavan, Symmetrization and Applications, World Scientific, Hackensack, NJ, 2006.

[15]

E. Lieb and M. Loss, Analysis, Grad. Stud. Math., vol. 14, Amer. Math. Soc., Providence, RI, 2001.

[16]

J. Mawhin and M. Willen, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer, Berlin, 1989. doi: 10.1007/978-1-4757-2061-7.

[17]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[18]

Y. Park, Fractional Polya-Zsego inequality, J. Chungcheong Math. Soc., 24 (2011), 267-271.

[19]

P. Rabinowitz, On a class of nonlinear Schrödinguer equations, ZAMP, 43 (1992), 270-291. doi: 10.1007/BF00946631.

[20]

S. Secchi, Ground state solutions for nonlinear fractional Schroinger equations in $\mathbbR^n$, J. Math. Phys., 54 (2013), 031501. doi: 10.1063/1.4793990.

[21]

S. Secchi, On fractional Schrödinger equation in $\mathbbR^n$ without the Ambrosetti-Rabinowitz condition,, to appear in \emph{Topological Methods in Nonlinear Analysis}., (). 

[22]

B. Simon, Convexity: An Analytic Viewpoint, Cambridge Tracts in Math. 187, Cambridge University Press, 2011. doi: 10.1017/CBO9780511910135.

[23]

J. Van Schaftingen, Symmetrization and minimax principle, Comm. Contemporary Math., 7 (2005), 463-481. doi: 10.1142/S0219199705001817.

show all references

References:
[1]

F. Almgren and E. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683-773. doi: 10.2307/1990893.

[2]

W. Beckner, Sobolev Inequalities, the Poisson Semigroup and analysis on the sphere $S^n$, Proc. Natl. Acad. Sci., 89 (1992), 4816-4819. doi: 10.1073/pnas.89.11.4816.

[3]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555.

[4]

R. Blumenthal and R. Getoor, Some theorems on stable processes, Trans. Am. Math. Soc., 95 (1960), 263-273.

[5]

K. Bogdan, K. Burdzy and Z. Q. Chen, Censored stable processes, Probab. Theory Relat. Fields, 127 (2003), 89-152. doi: 10.1007/s00440-003-0275-1.

[6]

M. Cheng, ound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012), 043507. doi: 10.1063/1.3701574.

[7]

S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schroinger type problem involving the fractional Laplacian, Le Matematiche, LXVIII (2013), 201-216.

[8]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinguer equation with the fractional laplacian, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 142 (2012), 1237-1262. doi: 10.1017/S0308210511000746.

[9]

P. Felmer and C. Torres, Non-linear Schrödinger equation with non-local regional diffusion,, Preprint., (). 

[10]

Q. Y. Guan, Integration by parts formula for regional fractional Laplacian, Commun. Math. Phys., 266 (2006), 289-329. doi: 10.1007/s00220-006-0054-9.

[11]

H. Ishii and G. Nakamura, A class of integral equations and approximation of p-Laplace equations, Calc. Var., 37 (2010), 485-522. doi: 10.1007/s00526-009-0274-x.

[12]

L. Jeanjean, On the existence of bounded Palais-Smale sequence and application to a Ladesman.Lazer-type problem set on $\mathbbR^n$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809. doi: 10.1017/S0308210500013147.

[13]

B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, Lect. Notes Math., 1150, Springer-Verlag, Berlin (1985).

[14]

S. Kesavan, Symmetrization and Applications, World Scientific, Hackensack, NJ, 2006.

[15]

E. Lieb and M. Loss, Analysis, Grad. Stud. Math., vol. 14, Amer. Math. Soc., Providence, RI, 2001.

[16]

J. Mawhin and M. Willen, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer, Berlin, 1989. doi: 10.1007/978-1-4757-2061-7.

[17]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[18]

Y. Park, Fractional Polya-Zsego inequality, J. Chungcheong Math. Soc., 24 (2011), 267-271.

[19]

P. Rabinowitz, On a class of nonlinear Schrödinguer equations, ZAMP, 43 (1992), 270-291. doi: 10.1007/BF00946631.

[20]

S. Secchi, Ground state solutions for nonlinear fractional Schroinger equations in $\mathbbR^n$, J. Math. Phys., 54 (2013), 031501. doi: 10.1063/1.4793990.

[21]

S. Secchi, On fractional Schrödinger equation in $\mathbbR^n$ without the Ambrosetti-Rabinowitz condition,, to appear in \emph{Topological Methods in Nonlinear Analysis}., (). 

[22]

B. Simon, Convexity: An Analytic Viewpoint, Cambridge Tracts in Math. 187, Cambridge University Press, 2011. doi: 10.1017/CBO9780511910135.

[23]

J. Van Schaftingen, Symmetrization and minimax principle, Comm. Contemporary Math., 7 (2005), 463-481. doi: 10.1142/S0219199705001817.

[1]

Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071

[2]

Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091

[3]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[4]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3851-3863. doi: 10.3934/dcdss.2020445

[5]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[6]

Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3821-3836. doi: 10.3934/dcdss.2020436

[8]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

[9]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

[10]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[11]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[12]

Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188

[13]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3589-3610. doi: 10.3934/dcdss.2021021

[14]

Songbai Peng, Aliang Xia. Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3723-3744. doi: 10.3934/cpaa.2021128

[15]

Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254

[16]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations and Control Theory, 2022, 11 (1) : 301-324. doi: 10.3934/eect.2021014

[17]

Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125

[18]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[19]

Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359

[20]

Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]