-
Previous Article
Stability of the linearized MHD-Maxwell free interface problem
- CPAA Home
- This Issue
-
Next Article
On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping
Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation
1. | Departamento de Ingeneria Matematica F.C.F.M., Universidad de Chile, Casilla 170 Correro 3, Santiago |
2. | Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático UMR2071 CNRS-UChile, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile |
References:
[1] |
F. Almgren and E. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683-773.
doi: 10.2307/1990893. |
[2] |
W. Beckner, Sobolev Inequalities, the Poisson Semigroup and analysis on the sphere $S^n$, Proc. Natl. Acad. Sci., 89 (1992), 4816-4819.
doi: 10.1073/pnas.89.11.4816. |
[3] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[4] |
R. Blumenthal and R. Getoor, Some theorems on stable processes, Trans. Am. Math. Soc., 95 (1960), 263-273. |
[5] |
K. Bogdan, K. Burdzy and Z. Q. Chen, Censored stable processes, Probab. Theory Relat. Fields, 127 (2003), 89-152.
doi: 10.1007/s00440-003-0275-1. |
[6] |
M. Cheng, ound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012), 043507.
doi: 10.1063/1.3701574. |
[7] |
S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schroinger type problem involving the fractional Laplacian, Le Matematiche, LXVIII (2013), 201-216. |
[8] |
P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinguer equation with the fractional laplacian, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 142 (2012), 1237-1262.
doi: 10.1017/S0308210511000746. |
[9] |
P. Felmer and C. Torres, Non-linear Schrödinger equation with non-local regional diffusion,, Preprint., ().
|
[10] |
Q. Y. Guan, Integration by parts formula for regional fractional Laplacian, Commun. Math. Phys., 266 (2006), 289-329.
doi: 10.1007/s00220-006-0054-9. |
[11] |
H. Ishii and G. Nakamura, A class of integral equations and approximation of p-Laplace equations, Calc. Var., 37 (2010), 485-522.
doi: 10.1007/s00526-009-0274-x. |
[12] |
L. Jeanjean, On the existence of bounded Palais-Smale sequence and application to a Ladesman.Lazer-type problem set on $\mathbbR^n$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809.
doi: 10.1017/S0308210500013147. |
[13] |
B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, Lect. Notes Math., 1150, Springer-Verlag, Berlin (1985). |
[14] |
S. Kesavan, Symmetrization and Applications, World Scientific, Hackensack, NJ, 2006. |
[15] |
E. Lieb and M. Loss, Analysis, Grad. Stud. Math., vol. 14, Amer. Math. Soc., Providence, RI, 2001. |
[16] |
J. Mawhin and M. Willen, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer, Berlin, 1989.
doi: 10.1007/978-1-4757-2061-7. |
[17] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[18] |
Y. Park, Fractional Polya-Zsego inequality, J. Chungcheong Math. Soc., 24 (2011), 267-271. |
[19] |
P. Rabinowitz, On a class of nonlinear Schrödinguer equations, ZAMP, 43 (1992), 270-291.
doi: 10.1007/BF00946631. |
[20] |
S. Secchi, Ground state solutions for nonlinear fractional Schroinger equations in $\mathbbR^n$, J. Math. Phys., 54 (2013), 031501.
doi: 10.1063/1.4793990. |
[21] |
S. Secchi, On fractional Schrödinger equation in $\mathbbR^n$ without the Ambrosetti-Rabinowitz condition,, to appear in \emph{Topological Methods in Nonlinear Analysis}., ().
|
[22] |
B. Simon, Convexity: An Analytic Viewpoint, Cambridge Tracts in Math. 187, Cambridge University Press, 2011.
doi: 10.1017/CBO9780511910135. |
[23] |
J. Van Schaftingen, Symmetrization and minimax principle, Comm. Contemporary Math., 7 (2005), 463-481.
doi: 10.1142/S0219199705001817. |
show all references
References:
[1] |
F. Almgren and E. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683-773.
doi: 10.2307/1990893. |
[2] |
W. Beckner, Sobolev Inequalities, the Poisson Semigroup and analysis on the sphere $S^n$, Proc. Natl. Acad. Sci., 89 (1992), 4816-4819.
doi: 10.1073/pnas.89.11.4816. |
[3] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[4] |
R. Blumenthal and R. Getoor, Some theorems on stable processes, Trans. Am. Math. Soc., 95 (1960), 263-273. |
[5] |
K. Bogdan, K. Burdzy and Z. Q. Chen, Censored stable processes, Probab. Theory Relat. Fields, 127 (2003), 89-152.
doi: 10.1007/s00440-003-0275-1. |
[6] |
M. Cheng, ound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012), 043507.
doi: 10.1063/1.3701574. |
[7] |
S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schroinger type problem involving the fractional Laplacian, Le Matematiche, LXVIII (2013), 201-216. |
[8] |
P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinguer equation with the fractional laplacian, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 142 (2012), 1237-1262.
doi: 10.1017/S0308210511000746. |
[9] |
P. Felmer and C. Torres, Non-linear Schrödinger equation with non-local regional diffusion,, Preprint., ().
|
[10] |
Q. Y. Guan, Integration by parts formula for regional fractional Laplacian, Commun. Math. Phys., 266 (2006), 289-329.
doi: 10.1007/s00220-006-0054-9. |
[11] |
H. Ishii and G. Nakamura, A class of integral equations and approximation of p-Laplace equations, Calc. Var., 37 (2010), 485-522.
doi: 10.1007/s00526-009-0274-x. |
[12] |
L. Jeanjean, On the existence of bounded Palais-Smale sequence and application to a Ladesman.Lazer-type problem set on $\mathbbR^n$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809.
doi: 10.1017/S0308210500013147. |
[13] |
B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, Lect. Notes Math., 1150, Springer-Verlag, Berlin (1985). |
[14] |
S. Kesavan, Symmetrization and Applications, World Scientific, Hackensack, NJ, 2006. |
[15] |
E. Lieb and M. Loss, Analysis, Grad. Stud. Math., vol. 14, Amer. Math. Soc., Providence, RI, 2001. |
[16] |
J. Mawhin and M. Willen, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer, Berlin, 1989.
doi: 10.1007/978-1-4757-2061-7. |
[17] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[18] |
Y. Park, Fractional Polya-Zsego inequality, J. Chungcheong Math. Soc., 24 (2011), 267-271. |
[19] |
P. Rabinowitz, On a class of nonlinear Schrödinguer equations, ZAMP, 43 (1992), 270-291.
doi: 10.1007/BF00946631. |
[20] |
S. Secchi, Ground state solutions for nonlinear fractional Schroinger equations in $\mathbbR^n$, J. Math. Phys., 54 (2013), 031501.
doi: 10.1063/1.4793990. |
[21] |
S. Secchi, On fractional Schrödinger equation in $\mathbbR^n$ without the Ambrosetti-Rabinowitz condition,, to appear in \emph{Topological Methods in Nonlinear Analysis}., ().
|
[22] |
B. Simon, Convexity: An Analytic Viewpoint, Cambridge Tracts in Math. 187, Cambridge University Press, 2011.
doi: 10.1017/CBO9780511910135. |
[23] |
J. Van Schaftingen, Symmetrization and minimax principle, Comm. Contemporary Math., 7 (2005), 463-481.
doi: 10.1142/S0219199705001817. |
[1] |
Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071 |
[2] |
Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091 |
[3] |
Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499 |
[4] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3851-3863. doi: 10.3934/dcdss.2020445 |
[5] |
Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168 |
[6] |
Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597 |
[7] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3821-3836. doi: 10.3934/dcdss.2020436 |
[8] |
Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154 |
[9] |
Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235 |
[10] |
Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104 |
[11] |
Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107 |
[12] |
Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188 |
[13] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3589-3610. doi: 10.3934/dcdss.2021021 |
[14] |
Songbai Peng, Aliang Xia. Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3723-3744. doi: 10.3934/cpaa.2021128 |
[15] |
Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254 |
[16] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations and Control Theory, 2022, 11 (1) : 301-324. doi: 10.3934/eect.2021014 |
[17] |
Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125 |
[18] |
D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563 |
[19] |
Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359 |
[20] |
Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]