November  2014, 13(6): 2395-2406. doi: 10.3934/cpaa.2014.13.2395

Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation

1. 

Departamento de Ingeneria Matematica F.C.F.M., Universidad de Chile, Casilla 170 Correro 3, Santiago

2. 

Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático UMR2071 CNRS-UChile, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile

Received  November 2013 Revised  March 2014 Published  July 2014

The aim of this paper is to study radial symmetry properties for ground state solutions of elliptic equations involving a regional fractional Laplacian, namely \begin{eqnarray} (-\Delta)_{\rho}^{\alpha}u + u = f(u) \quad \mbox{in} \ \mathbb{R}^{n}, \ \ \mbox{for} \ \ \alpha\in (0,1). \end{eqnarray} In [9], the authors proved that problem (1) has a ground state solution. In this work we prove that the ground state level is achieved by a radially symmetry solution. The proof is carried out by using variational methods jointly with rearrangement arguments.
Citation: Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395
References:
[1]

F. Almgren and E. Lieb, Symmetric decreasing rearrangement is sometimes continuous,, \emph{J. Amer. Math. Soc.}, 2 (1989), 683.  doi: 10.2307/1990893.  Google Scholar

[2]

W. Beckner, Sobolev Inequalities, the Poisson Semigroup and analysis on the sphere $S^n$,, \emph{Proc. Natl. Acad. Sci.}, 89 (1992), 4816.  doi: 10.1073/pnas.89.11.4816.  Google Scholar

[3]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, \emph{Arch. Rational Mech. Anal.}, 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[4]

R. Blumenthal and R. Getoor, Some theorems on stable processes,, \emph{Trans. Am. Math. Soc.}, 95 (1960), 263.   Google Scholar

[5]

K. Bogdan, K. Burdzy and Z. Q. Chen, Censored stable processes,, \emph{Probab. Theory Relat. Fields}, 127 (2003), 89.  doi: 10.1007/s00440-003-0275-1.  Google Scholar

[6]

M. Cheng, ound state for the fractional Schrödinger equation with unbounded potential,, \emph{J. Math. Phys.}, 53 (2012).  doi: 10.1063/1.3701574.  Google Scholar

[7]

S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schroinger type problem involving the fractional Laplacian,, \emph{Le Matematiche}, LXVIII (2013), 201.   Google Scholar

[8]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinguer equation with the fractional laplacian,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 142 (2012), 1237.  doi: 10.1017/S0308210511000746.  Google Scholar

[9]

P. Felmer and C. Torres, Non-linear Schrödinger equation with non-local regional diffusion,, Preprint., ().   Google Scholar

[10]

Q. Y. Guan, Integration by parts formula for regional fractional Laplacian,, \emph{Commun. Math. Phys.}, 266 (2006), 289.  doi: 10.1007/s00220-006-0054-9.  Google Scholar

[11]

H. Ishii and G. Nakamura, A class of integral equations and approximation of p-Laplace equations,, \emph{Calc. Var.}, 37 (2010), 485.  doi: 10.1007/s00526-009-0274-x.  Google Scholar

[12]

L. Jeanjean, On the existence of bounded Palais-Smale sequence and application to a Ladesman.Lazer-type problem set on $\mathbbR^n$,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 129 (1999), 787.  doi: 10.1017/S0308210500013147.  Google Scholar

[13]

B. Kawohl, Rearrangements and Convexity of Level Sets in PDE,, Lect. Notes Math., 1150 (1985).   Google Scholar

[14]

S. Kesavan, Symmetrization and Applications,, World Scientific, (2006).   Google Scholar

[15]

E. Lieb and M. Loss, Analysis,, Grad. Stud. Math., 14 (2001).   Google Scholar

[16]

J. Mawhin and M. Willen, Critical Point Theory and Hamiltonian Systems,, Applied Mathematical Sciences, 74 (1989).  doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[17]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, \emph{Bull. Sci. Math.}, 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[18]

Y. Park, Fractional Polya-Zsego inequality,, \emph{J. Chungcheong Math. Soc.}, 24 (2011), 267.   Google Scholar

[19]

P. Rabinowitz, On a class of nonlinear Schrödinguer equations,, \emph{ZAMP}, 43 (1992), 270.  doi: 10.1007/BF00946631.  Google Scholar

[20]

S. Secchi, Ground state solutions for nonlinear fractional Schroinger equations in $\mathbbR^n$,, \emph{J. Math. Phys.}, 54 (2013).  doi: 10.1063/1.4793990.  Google Scholar

[21]

S. Secchi, On fractional Schrödinger equation in $\mathbbR^n$ without the Ambrosetti-Rabinowitz condition,, to appear in \emph{Topological Methods in Nonlinear Analysis}., ().   Google Scholar

[22]

B. Simon, Convexity: An Analytic Viewpoint,, Cambridge Tracts in Math. \textbf{187}, 187 (2011).  doi: 10.1017/CBO9780511910135.  Google Scholar

[23]

J. Van Schaftingen, Symmetrization and minimax principle,, \emph{Comm. Contemporary Math.}, 7 (2005), 463.  doi: 10.1142/S0219199705001817.  Google Scholar

show all references

References:
[1]

F. Almgren and E. Lieb, Symmetric decreasing rearrangement is sometimes continuous,, \emph{J. Amer. Math. Soc.}, 2 (1989), 683.  doi: 10.2307/1990893.  Google Scholar

[2]

W. Beckner, Sobolev Inequalities, the Poisson Semigroup and analysis on the sphere $S^n$,, \emph{Proc. Natl. Acad. Sci.}, 89 (1992), 4816.  doi: 10.1073/pnas.89.11.4816.  Google Scholar

[3]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, \emph{Arch. Rational Mech. Anal.}, 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[4]

R. Blumenthal and R. Getoor, Some theorems on stable processes,, \emph{Trans. Am. Math. Soc.}, 95 (1960), 263.   Google Scholar

[5]

K. Bogdan, K. Burdzy and Z. Q. Chen, Censored stable processes,, \emph{Probab. Theory Relat. Fields}, 127 (2003), 89.  doi: 10.1007/s00440-003-0275-1.  Google Scholar

[6]

M. Cheng, ound state for the fractional Schrödinger equation with unbounded potential,, \emph{J. Math. Phys.}, 53 (2012).  doi: 10.1063/1.3701574.  Google Scholar

[7]

S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schroinger type problem involving the fractional Laplacian,, \emph{Le Matematiche}, LXVIII (2013), 201.   Google Scholar

[8]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinguer equation with the fractional laplacian,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 142 (2012), 1237.  doi: 10.1017/S0308210511000746.  Google Scholar

[9]

P. Felmer and C. Torres, Non-linear Schrödinger equation with non-local regional diffusion,, Preprint., ().   Google Scholar

[10]

Q. Y. Guan, Integration by parts formula for regional fractional Laplacian,, \emph{Commun. Math. Phys.}, 266 (2006), 289.  doi: 10.1007/s00220-006-0054-9.  Google Scholar

[11]

H. Ishii and G. Nakamura, A class of integral equations and approximation of p-Laplace equations,, \emph{Calc. Var.}, 37 (2010), 485.  doi: 10.1007/s00526-009-0274-x.  Google Scholar

[12]

L. Jeanjean, On the existence of bounded Palais-Smale sequence and application to a Ladesman.Lazer-type problem set on $\mathbbR^n$,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 129 (1999), 787.  doi: 10.1017/S0308210500013147.  Google Scholar

[13]

B. Kawohl, Rearrangements and Convexity of Level Sets in PDE,, Lect. Notes Math., 1150 (1985).   Google Scholar

[14]

S. Kesavan, Symmetrization and Applications,, World Scientific, (2006).   Google Scholar

[15]

E. Lieb and M. Loss, Analysis,, Grad. Stud. Math., 14 (2001).   Google Scholar

[16]

J. Mawhin and M. Willen, Critical Point Theory and Hamiltonian Systems,, Applied Mathematical Sciences, 74 (1989).  doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[17]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, \emph{Bull. Sci. Math.}, 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[18]

Y. Park, Fractional Polya-Zsego inequality,, \emph{J. Chungcheong Math. Soc.}, 24 (2011), 267.   Google Scholar

[19]

P. Rabinowitz, On a class of nonlinear Schrödinguer equations,, \emph{ZAMP}, 43 (1992), 270.  doi: 10.1007/BF00946631.  Google Scholar

[20]

S. Secchi, Ground state solutions for nonlinear fractional Schroinger equations in $\mathbbR^n$,, \emph{J. Math. Phys.}, 54 (2013).  doi: 10.1063/1.4793990.  Google Scholar

[21]

S. Secchi, On fractional Schrödinger equation in $\mathbbR^n$ without the Ambrosetti-Rabinowitz condition,, to appear in \emph{Topological Methods in Nonlinear Analysis}., ().   Google Scholar

[22]

B. Simon, Convexity: An Analytic Viewpoint,, Cambridge Tracts in Math. \textbf{187}, 187 (2011).  doi: 10.1017/CBO9780511910135.  Google Scholar

[23]

J. Van Schaftingen, Symmetrization and minimax principle,, \emph{Comm. Contemporary Math.}, 7 (2005), 463.  doi: 10.1142/S0219199705001817.  Google Scholar

[1]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[2]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[6]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[11]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[14]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[15]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[16]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[19]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[20]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]