\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Weak solutions to the equations of stationary magnetohydrodynamic flows in porous media

Abstract Related Papers Cited by
  • We study the differential system which describes the steady flow of an electrically conducting fluid in a saturated porous medium, when the fluid is subjected to the action of a magnetic field. The system consists of the stationary Brinkman-Forchheimer equations and the stationary magnetic induction equation. We prove existence of weak solutions to the system posed in a bounded domain of $\mathbb{R}^3$ and equipped with boundary conditions. We also prove uniqueness in the class of small solutions, and regularity of weak solutions. Then we establish a convergence result, as the Brinkman coefficient (viscosity) tends to 0, of the weak solutions to a solution of the system formed by the Darcy-Forchheimer equations and the magnetic induction equation.
    Mathematics Subject Classification: Primary: 76S05, 76W05; Secondary: 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Y. Amirat, Écoulements en milieux poreux n'obéissant pas à la loi de Darcy (French) [Flows in porous media not obeying the Darcy law], ESAIM: Math. Mod. Numer. Anal. - Modél. Math. Anal. Numér., 25 (1991), 273-306.

    [2]

    L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes (Italian), Rend. Sem. Mat. Univ. Padova, 31 (1961), 308-340.

    [3]

    O. Celebi, V. Kalantarov and D. Ugurlu, On continuous dependence on solutions of the Brinkman-Forchheimer equations, Appl. Math. Lett., 19 (2006), 801-807.doi: 10.1016/j.aml.2005.11.002.

    [4]

    P. E. Druet, Existence for the stationary MHD-equations coupled to heat transfer with nonlocal radiation effects, Czechoslovak Math. J., 59 (2009), 791-825.doi: 10.1007/s10587-009-0048-9.

    [5]

    G. Duvaut and J. L. Lions, Les inéquations en mécanique et en physique, Dunod, 1972.

    [6]

    G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Rational Mech. Anal., 46 (1972), 241-279.

    [7]

    P. Fabrie, Régularité de la solution de l'équation de Darcy-Forchheimer, Nonlinear Anal., 13 (1989), 1025-1051.doi: 10.1016/0362-546X(89)90093-X.

    [8]

    M. Firdaouss, J. L. Guermond and P. Le Quéré, Nonlinear corrections to Darcy's law at low Reynolds numbers, J. Fluid Mech., 343 (1997), 331-350.doi: 10.1017/S0022112097005843.

    [9]

    F. Franchi and B. Straughan, Continuous dependence and decay for the Forchheimer equations, R. Soc. Lond. Proc. Ser. A, Math. Phys. Eng. Sci., 459 (2003), 3195-3202.doi: 10.1098/rspa.2003.1169.

    [10]

    G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I. Linearized Steady Problems, Springer tracts in Natural Philosophy, 38, Springer Verlag, New-York, 1994.doi: 10.1007/978-1-4612-5364-8.

    [11]

    C. Geindreau and J. L. Auriault, Magnetohydrodynamic flows in porous media, J. Fluid Mech., 466 (2002), 343-63.doi: 10.1017/S0022112002001404.

    [12]

    V. Georgescu, Some boundary value problems for differential forms on compact Riemannian manifolds, Ann. Mat. Pura Appl., 4 (1979), 159-198.doi: 10.1007/BF02411693.

    [13]

    J. F. Gerbeau and C. Le Bris, A coupled system arising in magnetohydrodynamics, Appl. Math. Lett., 12 (1999), 53-57.doi: 10.1016/S0893-9659(98)00172-4.

    [14]

    T. Giorgi, Derivation of the Forchheimer law via matched asymptotic expansions, Transport in Porous Media, 29 (1997), 191-206.

    [15]

    C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254.doi: 10.1016/j.jde.2004.07.002.

    [16]

    J. D. Jackson, Classical Electrodynamics, Second Edition, John Wiley & Son, New York, 1975, (Third Edition, 1999).

    [17]

    O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, Rev. second edition, 1969.

    [18]

    P. Lehmann, R. Moreau, D. Camel and R. Bolcato, Modification of interdendritic convection in directional solidifcation by a uniform magnetic field, Acta Materialia, 46 (1998), 4067-4079.

    [19]

    P. Lehmann, R. Moreau, D. Camel and R. Bolcato, A simple analysis of the effect of convection on the structure of the mushy zone in the case of horizontal Bridgman solidification. Comparison with experimental results, J. Cryst. Growth, 183 (1998b), 690-704.

    [20]

    J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod-Gauthier-Villars, 1969.

    [21]

    P. L. Lions, Mathematical topics in fluid mechanics. Volume 1. Incompressible models, Oxford Science Publications, 1996.

    [22]

    A. J. Meir and P. G. Schmidt, On electromagnetically and thermally driven liquid-metal flows, Nonlinear anal., 47 (2001), 3281-3294.doi: 10.1016/S0362-546X(01)00445-X.

    [23]

    R. J. Moreau, Magnetohydrodynamics, Kluwer Academic Publishers, 1990.doi: 10.1007/978-94-015-7883-7.

    [24]

    L. E. Payne, J. C. Song and B. Straugham, Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity, R. Soc. Lond. Proc. Ser. A, Math. Phys. Eng. Sci., 455 (1999), 2173-2190.doi: 10.1098/rspa.1999.0398.

    [25]

    L. E. Payne and B. Straugham, Convergence and continuous dependence for the Brinkman-Forchheimer equations, Stud. Appl. Math., 102 (1999), 419-439.doi: 10.1111/1467-9590.00116.

    [26]

    V. R. Prasad, A. Beg and B. Vasu, Thermo-diffusion and diffusion-thermo effects on MHD free convection flow past a vertical porous plate in a non-Darcy porous medium, Chemical Engineering Journal, 173 (2011) 598-606.

    [27]

    B. Saramito, Stabilité d'un Plasma: Modélisation mathématique et simulation numérique (French) [Stability of a plasma: mathematical modelling and numerical simulation], Recherches en Mathématiques Appliquées [Research in Applied Mathematics], Masson, 1994.

    [28]

    M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.doi: 10.1002/cpa.3160360506.

    [29]

    J. Simon, Régularité de la solution d'un problème aux limites non linéaires (French) [Regularity of the solution of a nonlinear boundary problem], Ann. Fac. Sci. Toulouse Math., 3 (1981), 247-274.

    [30]

    L. Tartar, Topics in Nonlinear Analysis, Publications Mathématiques d'Orsay, 78.13, 1978.

    [31]

    R. Temam, Navier-Stokes equations, 3rd Edition, North-Holland, Amsterdam, 1984. Reedited in the AMS-Chelsea Series, Amer. Math. Soc., Providence, RI, 2001.

    [32]

    S. Whitaker, The Forchheimer equation: a theoretical development, Transport in Porous Media, 25 (1996), 27-62.

    [33]

    K. Zaïdat, Influence d'un champ magnétique glissant sur la solidification dirigée des alliages métalliques binaires, PhD Thesis, Institut National Polytechnique de Grenoble, 2005. Available from: http://tel.archives-ouvertes.fr/tel-00011040

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(70) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return