November  2014, 13(6): 2445-2464. doi: 10.3934/cpaa.2014.13.2445

Weak solutions to the equations of stationary magnetohydrodynamic flows in porous media

1. 

Laboratoire de Mathématiques, CNRS UMR 6620, Université Blaise Pascal (Clermont-Ferrand 2), 63177 Aubière cedex

2. 

Université Blaise Pascal & CNRS UMR 6620, Laboratoire de Mathématiques, Campus des Cézeaux, B.P. 80026, F-63177 Aubière cedex

3. 

Laboratoire de Mathématiques, CNRS UMR 6620, Université Blaise Pascal, 63177 Aubière Cedex, France

Received  November 2013 Revised  May 2014 Published  July 2014

We study the differential system which describes the steady flow of an electrically conducting fluid in a saturated porous medium, when the fluid is subjected to the action of a magnetic field. The system consists of the stationary Brinkman-Forchheimer equations and the stationary magnetic induction equation. We prove existence of weak solutions to the system posed in a bounded domain of $\mathbb{R}^3$ and equipped with boundary conditions. We also prove uniqueness in the class of small solutions, and regularity of weak solutions. Then we establish a convergence result, as the Brinkman coefficient (viscosity) tends to 0, of the weak solutions to a solution of the system formed by the Darcy-Forchheimer equations and the magnetic induction equation.
Citation: Youcef Amirat, Laurent Chupin, Rachid Touzani. Weak solutions to the equations of stationary magnetohydrodynamic flows in porous media. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2445-2464. doi: 10.3934/cpaa.2014.13.2445
References:
[1]

Y. Amirat, Écoulements en milieux poreux n'obéissant pas à la loi de Darcy (French) [Flows in porous media not obeying the Darcy law],, \emph{ESAIM: Math. Mod. Numer. Anal. - Modél. Math. Anal. Num\'er., 25 (1991), 273.   Google Scholar

[2]

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes (Italian),, \emph{Rend. Sem. Mat. Univ. Padova, 31 (1961), 308.   Google Scholar

[3]

O. Celebi, V. Kalantarov and D. Ugurlu, On continuous dependence on solutions of the Brinkman-Forchheimer equations,, \emph{Appl. Math. Lett., 19 (2006), 801.  doi: 10.1016/j.aml.2005.11.002.  Google Scholar

[4]

P. E. Druet, Existence for the stationary MHD-equations coupled to heat transfer with nonlocal radiation effects,, \emph{Czechoslovak Math. J., 59 (2009), 791.  doi: 10.1007/s10587-009-0048-9.  Google Scholar

[5]

G. Duvaut and J. L. Lions, Les inéquations en mécanique et en physique,, Dunod, (1972).   Google Scholar

[6]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique,, \emph{Arch. Rational Mech. Anal., 46 (1972), 241.   Google Scholar

[7]

P. Fabrie, Régularité de la solution de l'équation de Darcy-Forchheimer,, \emph{Nonlinear Anal., 13 (1989), 1025.  doi: 10.1016/0362-546X(89)90093-X.  Google Scholar

[8]

M. Firdaouss, J. L. Guermond and P. Le Quéré, Nonlinear corrections to Darcy's law at low Reynolds numbers,, \emph{J. Fluid Mech., 343 (1997), 331.  doi: 10.1017/S0022112097005843.  Google Scholar

[9]

F. Franchi and B. Straughan, Continuous dependence and decay for the Forchheimer equations,, \emph{R. Soc. Lond. Proc. Ser. A, 459 (2003), 3195.  doi: 10.1098/rspa.2003.1169.  Google Scholar

[10]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I. Linearized Steady Problems,, Springer tracts in Natural Philosophy, (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[11]

C. Geindreau and J. L. Auriault, Magnetohydrodynamic flows in porous media,, \emph{J. Fluid Mech., 466 (2002), 343.  doi: 10.1017/S0022112002001404.  Google Scholar

[12]

V. Georgescu, Some boundary value problems for differential forms on compact Riemannian manifolds,, \emph{Ann. Mat. Pura Appl., 4 (1979), 159.  doi: 10.1007/BF02411693.  Google Scholar

[13]

J. F. Gerbeau and C. Le Bris, A coupled system arising in magnetohydrodynamics,, \emph{Appl. Math. Lett., 12 (1999), 53.  doi: 10.1016/S0893-9659(98)00172-4.  Google Scholar

[14]

T. Giorgi, Derivation of the Forchheimer law via matched asymptotic expansions,, \emph{Transport in Porous Media, 29 (1997), 191.   Google Scholar

[15]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, \emph{J. Differential Equations, 213 (2005), 235.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[16]

J. D. Jackson, Classical Electrodynamics,, Second Edition, (1975).   Google Scholar

[17]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow,, Gordon and Breach, (1969).   Google Scholar

[18]

P. Lehmann, R. Moreau, D. Camel and R. Bolcato, Modification of interdendritic convection in directional solidifcation by a uniform magnetic field,, \emph{Acta Materialia, 46 (1998), 4067.   Google Scholar

[19]

P. Lehmann, R. Moreau, D. Camel and R. Bolcato, A simple analysis of the effect of convection on the structure of the mushy zone in the case of horizontal Bridgman solidification. Comparison with experimental results,, \emph{J. Cryst. Growth, 183 (): 690.   Google Scholar

[20]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires,, Dunod-Gauthier-Villars, (1969).   Google Scholar

[21]

P. L. Lions, Mathematical topics in fluid mechanics. Volume 1. Incompressible models,, Oxford Science Publications, (1996).   Google Scholar

[22]

A. J. Meir and P. G. Schmidt, On electromagnetically and thermally driven liquid-metal flows,, \emph{Nonlinear anal., 47 (2001), 3281.  doi: 10.1016/S0362-546X(01)00445-X.  Google Scholar

[23]

R. J. Moreau, Magnetohydrodynamics,, Kluwer Academic Publishers, (1990).  doi: 10.1007/978-94-015-7883-7.  Google Scholar

[24]

L. E. Payne, J. C. Song and B. Straugham, Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity,, \emph{R. Soc. Lond. Proc. Ser. A, 455 (1999), 2173.  doi: 10.1098/rspa.1999.0398.  Google Scholar

[25]

L. E. Payne and B. Straugham, Convergence and continuous dependence for the Brinkman-Forchheimer equations,, \emph{Stud. Appl. Math., 102 (1999), 419.  doi: 10.1111/1467-9590.00116.  Google Scholar

[26]

V. R. Prasad, A. Beg and B. Vasu, Thermo-diffusion and diffusion-thermo effects on MHD free convection flow past a vertical porous plate in a non-Darcy porous medium,, \emph{Chemical Engineering Journal, 173 (2011), 598.   Google Scholar

[27]

B. Saramito, Stabilité d'un Plasma: Modélisation mathématique et simulation numérique (French) [Stability of a plasma: mathematical modelling and numerical simulation],, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], (1994).   Google Scholar

[28]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, \emph{Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[29]

J. Simon, Régularité de la solution d'un problème aux limites non linéaires (French) [Regularity of the solution of a nonlinear boundary problem],, \emph{Ann. Fac. Sci. Toulouse Math., 3 (1981), 247.   Google Scholar

[30]

L. Tartar, Topics in Nonlinear Analysis,, Publications Mathématiques d'Orsay, (1978).   Google Scholar

[31]

R. Temam, Navier-Stokes equations,, 3rd Edition, (1984).   Google Scholar

[32]

S. Whitaker, The Forchheimer equation: a theoretical development,, \emph{Transport in Porous Media, 25 (1996), 27.   Google Scholar

[33]

K. Zaïdat, Influence d'un champ magnétique glissant sur la solidification dirigée des alliages métalliques binaires,, PhD Thesis, (2005).   Google Scholar

show all references

References:
[1]

Y. Amirat, Écoulements en milieux poreux n'obéissant pas à la loi de Darcy (French) [Flows in porous media not obeying the Darcy law],, \emph{ESAIM: Math. Mod. Numer. Anal. - Modél. Math. Anal. Num\'er., 25 (1991), 273.   Google Scholar

[2]

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes (Italian),, \emph{Rend. Sem. Mat. Univ. Padova, 31 (1961), 308.   Google Scholar

[3]

O. Celebi, V. Kalantarov and D. Ugurlu, On continuous dependence on solutions of the Brinkman-Forchheimer equations,, \emph{Appl. Math. Lett., 19 (2006), 801.  doi: 10.1016/j.aml.2005.11.002.  Google Scholar

[4]

P. E. Druet, Existence for the stationary MHD-equations coupled to heat transfer with nonlocal radiation effects,, \emph{Czechoslovak Math. J., 59 (2009), 791.  doi: 10.1007/s10587-009-0048-9.  Google Scholar

[5]

G. Duvaut and J. L. Lions, Les inéquations en mécanique et en physique,, Dunod, (1972).   Google Scholar

[6]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique,, \emph{Arch. Rational Mech. Anal., 46 (1972), 241.   Google Scholar

[7]

P. Fabrie, Régularité de la solution de l'équation de Darcy-Forchheimer,, \emph{Nonlinear Anal., 13 (1989), 1025.  doi: 10.1016/0362-546X(89)90093-X.  Google Scholar

[8]

M. Firdaouss, J. L. Guermond and P. Le Quéré, Nonlinear corrections to Darcy's law at low Reynolds numbers,, \emph{J. Fluid Mech., 343 (1997), 331.  doi: 10.1017/S0022112097005843.  Google Scholar

[9]

F. Franchi and B. Straughan, Continuous dependence and decay for the Forchheimer equations,, \emph{R. Soc. Lond. Proc. Ser. A, 459 (2003), 3195.  doi: 10.1098/rspa.2003.1169.  Google Scholar

[10]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I. Linearized Steady Problems,, Springer tracts in Natural Philosophy, (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[11]

C. Geindreau and J. L. Auriault, Magnetohydrodynamic flows in porous media,, \emph{J. Fluid Mech., 466 (2002), 343.  doi: 10.1017/S0022112002001404.  Google Scholar

[12]

V. Georgescu, Some boundary value problems for differential forms on compact Riemannian manifolds,, \emph{Ann. Mat. Pura Appl., 4 (1979), 159.  doi: 10.1007/BF02411693.  Google Scholar

[13]

J. F. Gerbeau and C. Le Bris, A coupled system arising in magnetohydrodynamics,, \emph{Appl. Math. Lett., 12 (1999), 53.  doi: 10.1016/S0893-9659(98)00172-4.  Google Scholar

[14]

T. Giorgi, Derivation of the Forchheimer law via matched asymptotic expansions,, \emph{Transport in Porous Media, 29 (1997), 191.   Google Scholar

[15]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, \emph{J. Differential Equations, 213 (2005), 235.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[16]

J. D. Jackson, Classical Electrodynamics,, Second Edition, (1975).   Google Scholar

[17]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow,, Gordon and Breach, (1969).   Google Scholar

[18]

P. Lehmann, R. Moreau, D. Camel and R. Bolcato, Modification of interdendritic convection in directional solidifcation by a uniform magnetic field,, \emph{Acta Materialia, 46 (1998), 4067.   Google Scholar

[19]

P. Lehmann, R. Moreau, D. Camel and R. Bolcato, A simple analysis of the effect of convection on the structure of the mushy zone in the case of horizontal Bridgman solidification. Comparison with experimental results,, \emph{J. Cryst. Growth, 183 (): 690.   Google Scholar

[20]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires,, Dunod-Gauthier-Villars, (1969).   Google Scholar

[21]

P. L. Lions, Mathematical topics in fluid mechanics. Volume 1. Incompressible models,, Oxford Science Publications, (1996).   Google Scholar

[22]

A. J. Meir and P. G. Schmidt, On electromagnetically and thermally driven liquid-metal flows,, \emph{Nonlinear anal., 47 (2001), 3281.  doi: 10.1016/S0362-546X(01)00445-X.  Google Scholar

[23]

R. J. Moreau, Magnetohydrodynamics,, Kluwer Academic Publishers, (1990).  doi: 10.1007/978-94-015-7883-7.  Google Scholar

[24]

L. E. Payne, J. C. Song and B. Straugham, Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity,, \emph{R. Soc. Lond. Proc. Ser. A, 455 (1999), 2173.  doi: 10.1098/rspa.1999.0398.  Google Scholar

[25]

L. E. Payne and B. Straugham, Convergence and continuous dependence for the Brinkman-Forchheimer equations,, \emph{Stud. Appl. Math., 102 (1999), 419.  doi: 10.1111/1467-9590.00116.  Google Scholar

[26]

V. R. Prasad, A. Beg and B. Vasu, Thermo-diffusion and diffusion-thermo effects on MHD free convection flow past a vertical porous plate in a non-Darcy porous medium,, \emph{Chemical Engineering Journal, 173 (2011), 598.   Google Scholar

[27]

B. Saramito, Stabilité d'un Plasma: Modélisation mathématique et simulation numérique (French) [Stability of a plasma: mathematical modelling and numerical simulation],, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], (1994).   Google Scholar

[28]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, \emph{Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[29]

J. Simon, Régularité de la solution d'un problème aux limites non linéaires (French) [Regularity of the solution of a nonlinear boundary problem],, \emph{Ann. Fac. Sci. Toulouse Math., 3 (1981), 247.   Google Scholar

[30]

L. Tartar, Topics in Nonlinear Analysis,, Publications Mathématiques d'Orsay, (1978).   Google Scholar

[31]

R. Temam, Navier-Stokes equations,, 3rd Edition, (1984).   Google Scholar

[32]

S. Whitaker, The Forchheimer equation: a theoretical development,, \emph{Transport in Porous Media, 25 (1996), 27.   Google Scholar

[33]

K. Zaïdat, Influence d'un champ magnétique glissant sur la solidification dirigée des alliages métalliques binaires,, PhD Thesis, (2005).   Google Scholar

[1]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[2]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[3]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[4]

Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265

[5]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[6]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[7]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[8]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[9]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[10]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[11]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[12]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[13]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[14]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[15]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[16]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[17]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[18]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[19]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[20]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]