\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method

Abstract / Introduction Related Papers Cited by
  • In this paper, we study the homogenization and corrector results for the hyperbolic problem in a two-component composite with $\varepsilon$-periodic connected inclusions. The condition prescribed on the interface is that a jump of the solution is proportional to the conormal derivatives via a function of order $\varepsilon^\gamma$ ($\gamma < -1$). The main ingredient of the proof of our main theorems is the time-dependent periodic unfolding method in two-component domains. Our homogenization results recover those of the corresponding case in [Donato, Faella and Monsurrò, J. Math. Pures Appl. 87 (2007), pp. 119-143]. We also derive the corresponding corrector results.
    Mathematics Subject Classification: Primary: 35B27; Secondary: 35L05, 82B24.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Brahim-Otsman, G. Francfort and F. Murat, Correctors for the homogenization of the wave and heat equations, J. Math. Pures Appl., 71 (1992), 197-231.

    [2]

    D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. Math. Anal., 44 (2002), 718-760.doi: 10.1137/100817942.

    [3]

    D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620.doi: 10.1137/080713148.

    [4]

    D. Cioranescu and P. Donato, "An Introduction to Homogenization," Oxford Univ. Press, Oxford, 1999.

    [5]

    H. Carslaw and J. Jaeger, "Conduction of Heat in Solids," Clarendon Press, Oxford, 1947.

    [6]

    P. Donato, Some corrector results for composites with imperfect interface, Rend. Mat. Appl., VII. Ser., 26 (2006), 189-209.

    [7]

    P. Donato, L. Faella and S. Monsurrò, Homogenization of the wave equation in composites with imperfect interface: A memory effect, J. Math. Pures Appl., 87 (2007), 119-143.doi: 10.1016/j.matpur.2006.11.004.

    [8]

    P. Donato, L. Faella and S. Monsurrò, Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces, SIAM J. Math. Anal., 40 (2009), 1952-1978.doi: 10.1137/080712684.

    [9]

    P. Donato and E. Jose, Corrector results for a parabolic problem with a memory effect, ESAIM: Mathematical Modelling and Numerical Analysis, 44 (2010), 421-454.doi: 10.1051/m2an/2010008.

    [10]

    P. Donato and S. Monsurrò, Homogenization of two heat conductors with an interfacial contact resistance, Analysis and Applications, 2 (2004), 247-273.doi: 10.1142/S0219530504000345.

    [11]

    P. Donato, K. Le Nguyen and R. Tardieu, The periodic unfolding method for a class of imperfect transmission problems, J. Math. Sci., 176 (2011), 891-927.

    [12]

    P. Donato and Z. Yang, The periodic unfolding method for the wave equation in domains with holes, Advances in Mathematical Sciences and Applications, 22 (2012), 521-551.

    [13]

    E. Jose, Homogenization of a parabolic problem with an imperfect interface, Rev. Rouma. Math. Pures Appl., 54 (2009), 189-222.

    [14]

    S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier, Adv. Math. Sci. Appl., 13 (2003), 43-63.

    [15]

    S. Monsurrò, Erratum for the paper Homogenization of a two-component composite with interfacial thermal barrier, Adv. Math. Sci. Appl., 14 (2004), 375-377.

    [16]

    A. Nabil, A corrector result for the wave equations in perforated domains, Gakuto Internat. Ser., Math. Sci. Appl., 9 (1997), 309-321.

    [17]

    L. Tartar, Quelques remarques sur l'homogénéisation, in "Functional Analysis and Numerical Analysis" (eds. H. Fujita), Proc. Japan-France Seminar, (1976), 468-482.

    [18]

    Z. YangThe periodic unfolding method for a class of parabolic problems with imperfect interfaces, Submitted.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(112) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return