November  2014, 13(6): 2509-2542. doi: 10.3934/cpaa.2014.13.2509

A quasi-linear heat transmission problem in a periodic two-phase dilute composite. A functional analytic approach

1. 

Dipartimento di Matematica, Universitá degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy, Italy

Received  January 2014 Revised  June 2014 Published  July 2014

We consider a heat transmission problem for a composite material which fills the $n$-dimensional Euclidean space. The composite has a periodic structure and consists of two materials. In each periodicity cell one material occupies a cavity of size $\epsilon$, and the second material fills the remaining part of the cell. We assume that the thermal conductivities of the materials depend nonlinearly upon the temperature. We show that for $\epsilon$ small enough the problem has a solution, \textit{i.e.}, a pair of functions which determine the temperature distribution in the two materials. Then we analyze the behavior of such a solution as $\epsilon$ approaches $0$ by an approach which is alternative to those of asymptotic analysis. In particular we prove that if $n\geq 3$, the temperature can be expanded into a convergent series expansion of powers of $\epsilon$ and that if $n=2$ the temperature can be expanded into a convergent double series expansion of powers of $\epsilon$ and $\epsilon \log \epsilon$.
Citation: Massimo Lanza de Cristoforis, aolo Musolino. A quasi-linear heat transmission problem in a periodic two-phase dilute composite. A functional analytic approach. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2509-2542. doi: 10.3934/cpaa.2014.13.2509
References:
[1]

H. Ammari and H. Kang, Polarization and Moment Tensors,, Applied Mathematical Sciences, (2007).

[2]

H. Ammari, H. Kang and K. Touibi, Boundary layer techniques for deriving the effective properties of composite materials,, \emph{Asymptot. Anal.}, 41 (2005), 119.

[3]

J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity,, \emph{Philos. Trans. Roy. Soc. London Ser. A}, 306 (1982), 557. doi: 10.1098/rsta.1982.0095.

[4]

R. Böhme and F. Tomi, Zur Struktur der Lösungsmenge des Plateauproblems,, \emph{Math. Z.}, 133 (1973), 1.

[5]

V. Bonnaillie-Noël, M. Dambrine, S. Tordeux and G. Vial, Interactions between moderately close inclusions for the Laplace equation,, \emph{Math. Models Methods Appl. Sci.}, 19 (2009), 1853. doi: 10.1142/S021820250900398X.

[6]

L. P. Castro and E. Pesetskaya, A transmission problem with imperfect contact for an unbounded multiply connected domain,, \emph{Math. Methods Appl. Sci.}, 33 (2010), 517. doi: 10.1002/mma.1217.

[7]

L. P. Castro, E. Pesetskaya and S. V. Rogosin, Effective conductivity of a composite material with non-ideal contact conditions,, \emph{Complex Var. Elliptic Equ.}, 54 (2009), 1085. doi: 10.1080/17476930903275995.

[8]

M. Dalla Riva and M. Lanza de Cristoforis, A perturbation result for the layer potentials of general second order differential operators with constant coefficients,, \emph{J. Appl. Funct. Anal.}, 5 (2010), 10.

[9]

M. Dalla Riva and M. Lanza de Cristoforis, Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem: a functional analytic approach,, \emph{Complex Var. Elliptic Equ.}, 55 (2010), 771. doi: 10.1080/17476931003628216.

[10]

M. Dalla Riva and M. Lanza de Cristoforis, Weakly singular and microscopically hypersingular load perturbation for a nonlinear traction boundary value problem: a functional analytic approach,, \emph{Complex Anal. Oper. Theory}, 5 (2011), 811. doi: 10.1007/s11785-010-0109-y.

[11]

M. Dalla Riva and P. Musolino, Real analytic families of harmonic functions in a domain with a small hole,, \emph{J. Differential Equations}, 252 (2012), 6337. doi: 10.1016/j.jde.2012.03.007.

[12]

M. Dalla Riva and P. Musolino, A singularly perturbed nonideal transmission problem and application to the effective conductivity of a periodic composite,, \emph{SIAM J. Appl. Math.}, 73 (2013), 24. doi: 10.1137/120886637.

[13]

G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains,, \emph{Ann. Inst. H. Poincaré Anal. Non Linéaire}, 21 (2004), 445. doi: 10.1016/j.anihpc.2003.05.001.

[14]

K. Deimling, Nonlinear Functional Analysis,, Springer-Verlag, (1985). doi: 10.1007/978-3-662-00547-7.

[15]

P. Drygas and V. Mityushev, Effective conductivity of unidirectional cylinders with interfacial resistance,, \emph{Quart. J. Mech. Appl. Math.}, 62 (2009), 235. doi: 10.1093/qjmam/hbp010.

[16]

G. B. Folland, Introduction to Partial Differential Equations,, Princeton University Press, (1995).

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer Verlag, (1983). doi: 10.1007/978-3-642-61798-0.

[18]

D. Henry, Topics in Nonlinear Analysis,, Trabalho de Matem\'atica, (1982).

[19]

M. Iguernane, S. A. Nazarov, J. R. Roche, J. Sokolowski and K. Szulc, Topological derivatives for semilinear elliptic equations,, \emph{Int. J. Appl. Math. Comput. Sci.}, 19 (2009), 191. doi: 10.2478/v10006-009-0016-4.

[20]

A. Kirsch, Surface gradients and continuity properties for some integral operators in classical scattering theory,, \emph{Math. Methods Appl. Sci.}, 11 (1989), 789. doi: 10.1002/mma.1670110605.

[21]

M. Lanza de Cristoforis, Properties and pathologies of the composition and inversion operators in Schauder spaces,, \emph{Acc. Naz. delle Sci. detta dei XL}, 15 (1991), 93.

[22]

M. Lanza de Cristoforis, Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole in Schauder spaces,, \emph{Comput. Methods Funct. Theory}, 2 (2002), 1. doi: 10.1007/BF03321008.

[23]

M. Lanza de Cristoforis, Asymptotic behavior of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach,, \emph{Complex Var. Elliptic Equ.}, 52 (2007), 945. doi: 10.1080/17476930701485630.

[24]

M. Lanza de Cristoforis, Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach,, \emph{Analysis (Munich)}, 28 (2008), 63. doi: 10.1524/anly.2008.0903.

[25]

M. Lanza de Cristoforis, Asymptotic behaviour of the solutions of a nonlinear transmission problem for the Laplace operator in a domain with a small hole. A functional analytic approach,, \emph{Complex Var. Elliptic Equ.}, 55 (2010), 269. doi: 10.1080/17476930902999058.

[26]

M. Lanza de Cristoforis and P. Musolino, A perturbation result for periodic layer potentials of general second order differential operators with constant coefficients,, \emph{Far East J. Math. Sci. (FJMS)}, 52 (2011), 75.

[27]

M. Lanza de Cristoforis and P. Musolino, A real analyticity result for a nonlinear integral operator,, \emph{J. Integral Equations Appl.}, 25 (2013), 21. doi: 10.1216/JIE-2013-25-1-21.

[28]

M. Lanza de Cristoforis and P. Musolino, A singularly perturbed nonlinear Robin problem in a periodically perforated domain: a functional analytic approach,, \emph{Complex Var. Elliptic Equ.}, 58 (2013), 511. doi: 10.1080/17476933.2011.638716.

[29]

M. Lanza de Cristoforis and P. Musolino, A singularly perturbed Neumann problem for the Poisson equation in a periodically perforated domain. A functional analytic approach,, Submitted, (2014).

[30]

M. Lanza de Cristoforis and L. Rossi, Real analytic dependence of simple and double layer potentials upon perturbation of the support and of the density,, \emph{J. Integral Equations Appl.}, 16 (2004), 137. doi: 10.1216/jiea/1181075272.

[31]

V. Maz'ya, A. Movchan and M. Nieves, Green's Kernels and Meso-scale Approximations in Perforated Domains,, Lecture Notes in Mathematics, (2077). doi: 10.1007/978-3-319-00357-3.

[32]

V. Maz'ya, S. Nazarov and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains,, Vols. I, (2000).

[33]

C. Miranda, Sulle proprietà di regolarità di certe trasformazioni integrali,, \emph{Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I.}, 7 (1965), 303.

[34]

V. V. Mityushev, Transport properties of double-periodic arrays of circular cylinders,, \emph{Z. Angew. Math. Mech.}, 77 (1997), 115. doi: 10.1002/zamm.19970770209.

[35]

V. Mityushev, Transport properties of doubly periodic arrays of circular cylinders and optimal design problems,, \emph{Appl. Math. Optim.}, 44 (2001), 17. doi: 10.1007/s00245-001-0013-y.

[36]

V. V. Mityushev and S. V. Rogosin, Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions,, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, (2000).

[37]

P. Musolino, A singularly perturbed Dirichlet problem for the Laplace operator in a periodically perforated domain. A functional analytic approach,, \emph{Math. Methods Appl. Sci.}, 35 (2012), 334. doi: 10.1002/mma.1575.

[38]

P. Musolino, A singularly perturbed Dirichlet problem for the Poisson equation in a periodically perforated domain. A functional analytic approach,, in \emph{Advances in Harmonic Analysis and Operator Theory, (2013), 269. doi: 10.1007/978-3-0348-0516-2_15.

[39]

S. A. Nazarov and J. Sokołowski, Asymptotic analysis of shape functionals,, \emph{J. Math. Pures Appl.}, 82 (2003), 125. doi: 10.1016/S0021-7824(03)00004-7.

[40]

J. Schauder, Potentialtheoretische Untersuchungen,, \emph{Math. Z.}, 33 (1931), 602. doi: 10.1007/BF01174371.

[41]

J. Schauder, Bemerkung zu meiner Arbeit "Potentialtheoretische Untersuchungen I (Anhang)'',, \emph{Math. Z.}, 35 (1932), 536. doi: 10.1007/BF01186569.

[42]

J. Sivaloganathan, S. J. Spector and V. Tilakraj, The convergence of regularized minimizers for cavitation problems in nonlinear elasticity,, \emph{SIAM J. Appl. Math.}, 66 (2006), 736. doi: 10.1137/040618965.

[43]

M. S. Titcombe and M. J. Ward, Summing logarithmic expansions for elliptic equations in multiply-connected domains with small holes,, \emph{Canad. Appl. Math. Quart.}, 7 (1999), 313.

[44]

T. Valent, Boundary Value Problems of Finite Elasticity. Local Theorems on Existence, Uniqueness and Analytic Dependence on Data,, Springer-Verlag, (1988). doi: 10.1007/978-1-4612-3736-5.

[45]

M. J. Ward, W. D. Henshaw and J. B. Keller, Summing logarithmic expansions for singularly perturbed eigenvalue problems,, \emph{SIAM J. Appl. Math.}, 53 (1993), 799. doi: 10.1137/0153039.

[46]

M. J. Ward and J. B. Keller, Nonlinear eigenvalue problems under strong localized perturbations with applications to chemical reactors,, \emph{Stud. Appl. Math.}, 85 (1991), 1.

[47]

M. J. Ward and J. B. Keller, Strong localized perturbations of eigenvalue problems,, \emph{SIAM J. Appl. Math.}, 53 (1993), 770. doi: 10.1137/0153038.

show all references

References:
[1]

H. Ammari and H. Kang, Polarization and Moment Tensors,, Applied Mathematical Sciences, (2007).

[2]

H. Ammari, H. Kang and K. Touibi, Boundary layer techniques for deriving the effective properties of composite materials,, \emph{Asymptot. Anal.}, 41 (2005), 119.

[3]

J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity,, \emph{Philos. Trans. Roy. Soc. London Ser. A}, 306 (1982), 557. doi: 10.1098/rsta.1982.0095.

[4]

R. Böhme and F. Tomi, Zur Struktur der Lösungsmenge des Plateauproblems,, \emph{Math. Z.}, 133 (1973), 1.

[5]

V. Bonnaillie-Noël, M. Dambrine, S. Tordeux and G. Vial, Interactions between moderately close inclusions for the Laplace equation,, \emph{Math. Models Methods Appl. Sci.}, 19 (2009), 1853. doi: 10.1142/S021820250900398X.

[6]

L. P. Castro and E. Pesetskaya, A transmission problem with imperfect contact for an unbounded multiply connected domain,, \emph{Math. Methods Appl. Sci.}, 33 (2010), 517. doi: 10.1002/mma.1217.

[7]

L. P. Castro, E. Pesetskaya and S. V. Rogosin, Effective conductivity of a composite material with non-ideal contact conditions,, \emph{Complex Var. Elliptic Equ.}, 54 (2009), 1085. doi: 10.1080/17476930903275995.

[8]

M. Dalla Riva and M. Lanza de Cristoforis, A perturbation result for the layer potentials of general second order differential operators with constant coefficients,, \emph{J. Appl. Funct. Anal.}, 5 (2010), 10.

[9]

M. Dalla Riva and M. Lanza de Cristoforis, Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem: a functional analytic approach,, \emph{Complex Var. Elliptic Equ.}, 55 (2010), 771. doi: 10.1080/17476931003628216.

[10]

M. Dalla Riva and M. Lanza de Cristoforis, Weakly singular and microscopically hypersingular load perturbation for a nonlinear traction boundary value problem: a functional analytic approach,, \emph{Complex Anal. Oper. Theory}, 5 (2011), 811. doi: 10.1007/s11785-010-0109-y.

[11]

M. Dalla Riva and P. Musolino, Real analytic families of harmonic functions in a domain with a small hole,, \emph{J. Differential Equations}, 252 (2012), 6337. doi: 10.1016/j.jde.2012.03.007.

[12]

M. Dalla Riva and P. Musolino, A singularly perturbed nonideal transmission problem and application to the effective conductivity of a periodic composite,, \emph{SIAM J. Appl. Math.}, 73 (2013), 24. doi: 10.1137/120886637.

[13]

G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains,, \emph{Ann. Inst. H. Poincaré Anal. Non Linéaire}, 21 (2004), 445. doi: 10.1016/j.anihpc.2003.05.001.

[14]

K. Deimling, Nonlinear Functional Analysis,, Springer-Verlag, (1985). doi: 10.1007/978-3-662-00547-7.

[15]

P. Drygas and V. Mityushev, Effective conductivity of unidirectional cylinders with interfacial resistance,, \emph{Quart. J. Mech. Appl. Math.}, 62 (2009), 235. doi: 10.1093/qjmam/hbp010.

[16]

G. B. Folland, Introduction to Partial Differential Equations,, Princeton University Press, (1995).

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer Verlag, (1983). doi: 10.1007/978-3-642-61798-0.

[18]

D. Henry, Topics in Nonlinear Analysis,, Trabalho de Matem\'atica, (1982).

[19]

M. Iguernane, S. A. Nazarov, J. R. Roche, J. Sokolowski and K. Szulc, Topological derivatives for semilinear elliptic equations,, \emph{Int. J. Appl. Math. Comput. Sci.}, 19 (2009), 191. doi: 10.2478/v10006-009-0016-4.

[20]

A. Kirsch, Surface gradients and continuity properties for some integral operators in classical scattering theory,, \emph{Math. Methods Appl. Sci.}, 11 (1989), 789. doi: 10.1002/mma.1670110605.

[21]

M. Lanza de Cristoforis, Properties and pathologies of the composition and inversion operators in Schauder spaces,, \emph{Acc. Naz. delle Sci. detta dei XL}, 15 (1991), 93.

[22]

M. Lanza de Cristoforis, Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole in Schauder spaces,, \emph{Comput. Methods Funct. Theory}, 2 (2002), 1. doi: 10.1007/BF03321008.

[23]

M. Lanza de Cristoforis, Asymptotic behavior of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach,, \emph{Complex Var. Elliptic Equ.}, 52 (2007), 945. doi: 10.1080/17476930701485630.

[24]

M. Lanza de Cristoforis, Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach,, \emph{Analysis (Munich)}, 28 (2008), 63. doi: 10.1524/anly.2008.0903.

[25]

M. Lanza de Cristoforis, Asymptotic behaviour of the solutions of a nonlinear transmission problem for the Laplace operator in a domain with a small hole. A functional analytic approach,, \emph{Complex Var. Elliptic Equ.}, 55 (2010), 269. doi: 10.1080/17476930902999058.

[26]

M. Lanza de Cristoforis and P. Musolino, A perturbation result for periodic layer potentials of general second order differential operators with constant coefficients,, \emph{Far East J. Math. Sci. (FJMS)}, 52 (2011), 75.

[27]

M. Lanza de Cristoforis and P. Musolino, A real analyticity result for a nonlinear integral operator,, \emph{J. Integral Equations Appl.}, 25 (2013), 21. doi: 10.1216/JIE-2013-25-1-21.

[28]

M. Lanza de Cristoforis and P. Musolino, A singularly perturbed nonlinear Robin problem in a periodically perforated domain: a functional analytic approach,, \emph{Complex Var. Elliptic Equ.}, 58 (2013), 511. doi: 10.1080/17476933.2011.638716.

[29]

M. Lanza de Cristoforis and P. Musolino, A singularly perturbed Neumann problem for the Poisson equation in a periodically perforated domain. A functional analytic approach,, Submitted, (2014).

[30]

M. Lanza de Cristoforis and L. Rossi, Real analytic dependence of simple and double layer potentials upon perturbation of the support and of the density,, \emph{J. Integral Equations Appl.}, 16 (2004), 137. doi: 10.1216/jiea/1181075272.

[31]

V. Maz'ya, A. Movchan and M. Nieves, Green's Kernels and Meso-scale Approximations in Perforated Domains,, Lecture Notes in Mathematics, (2077). doi: 10.1007/978-3-319-00357-3.

[32]

V. Maz'ya, S. Nazarov and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains,, Vols. I, (2000).

[33]

C. Miranda, Sulle proprietà di regolarità di certe trasformazioni integrali,, \emph{Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I.}, 7 (1965), 303.

[34]

V. V. Mityushev, Transport properties of double-periodic arrays of circular cylinders,, \emph{Z. Angew. Math. Mech.}, 77 (1997), 115. doi: 10.1002/zamm.19970770209.

[35]

V. Mityushev, Transport properties of doubly periodic arrays of circular cylinders and optimal design problems,, \emph{Appl. Math. Optim.}, 44 (2001), 17. doi: 10.1007/s00245-001-0013-y.

[36]

V. V. Mityushev and S. V. Rogosin, Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions,, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, (2000).

[37]

P. Musolino, A singularly perturbed Dirichlet problem for the Laplace operator in a periodically perforated domain. A functional analytic approach,, \emph{Math. Methods Appl. Sci.}, 35 (2012), 334. doi: 10.1002/mma.1575.

[38]

P. Musolino, A singularly perturbed Dirichlet problem for the Poisson equation in a periodically perforated domain. A functional analytic approach,, in \emph{Advances in Harmonic Analysis and Operator Theory, (2013), 269. doi: 10.1007/978-3-0348-0516-2_15.

[39]

S. A. Nazarov and J. Sokołowski, Asymptotic analysis of shape functionals,, \emph{J. Math. Pures Appl.}, 82 (2003), 125. doi: 10.1016/S0021-7824(03)00004-7.

[40]

J. Schauder, Potentialtheoretische Untersuchungen,, \emph{Math. Z.}, 33 (1931), 602. doi: 10.1007/BF01174371.

[41]

J. Schauder, Bemerkung zu meiner Arbeit "Potentialtheoretische Untersuchungen I (Anhang)'',, \emph{Math. Z.}, 35 (1932), 536. doi: 10.1007/BF01186569.

[42]

J. Sivaloganathan, S. J. Spector and V. Tilakraj, The convergence of regularized minimizers for cavitation problems in nonlinear elasticity,, \emph{SIAM J. Appl. Math.}, 66 (2006), 736. doi: 10.1137/040618965.

[43]

M. S. Titcombe and M. J. Ward, Summing logarithmic expansions for elliptic equations in multiply-connected domains with small holes,, \emph{Canad. Appl. Math. Quart.}, 7 (1999), 313.

[44]

T. Valent, Boundary Value Problems of Finite Elasticity. Local Theorems on Existence, Uniqueness and Analytic Dependence on Data,, Springer-Verlag, (1988). doi: 10.1007/978-1-4612-3736-5.

[45]

M. J. Ward, W. D. Henshaw and J. B. Keller, Summing logarithmic expansions for singularly perturbed eigenvalue problems,, \emph{SIAM J. Appl. Math.}, 53 (1993), 799. doi: 10.1137/0153039.

[46]

M. J. Ward and J. B. Keller, Nonlinear eigenvalue problems under strong localized perturbations with applications to chemical reactors,, \emph{Stud. Appl. Math.}, 85 (1991), 1.

[47]

M. J. Ward and J. B. Keller, Strong localized perturbations of eigenvalue problems,, \emph{SIAM J. Appl. Math.}, 53 (1993), 770. doi: 10.1137/0153038.

[1]

Vasily Denisov and Andrey Muravnik. On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations. Electronic Research Announcements, 2003, 9: 88-93.

[2]

Yongqin Liu, Shuichi Kawashima. Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1113-1139. doi: 10.3934/dcds.2011.29.1113

[3]

Juncheng Wei, Jun Yang. Toda system and interior clustering line concentration for a singularly perturbed Neumann problem in two dimensional domain. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 465-508. doi: 10.3934/dcds.2008.22.465

[4]

Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the two-phase Stefan problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5379-5405. doi: 10.3934/dcds.2013.33.5379

[5]

Marianne Korten, Charles N. Moore. Regularity for solutions of the two-phase Stefan problem. Communications on Pure & Applied Analysis, 2008, 7 (3) : 591-600. doi: 10.3934/cpaa.2008.7.591

[6]

Eberhard Bänsch, Steffen Basting, Rolf Krahl. Numerical simulation of two-phase flows with heat and mass transfer. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2325-2347. doi: 10.3934/dcds.2015.35.2325

[7]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[8]

Viorel Barbu, Gabriela Marinoschi. An identification problem for a linear evolution equation in a banach space. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-12. doi: 10.3934/dcdss.2020081

[9]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 1-39. doi: 10.3934/dcds.2010.28.1

[10]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[11]

V. S. Manoranjan, Hong-Ming Yin, R. Showalter. On two-phase Stefan problem arising from a microwave heating process. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1155-1168. doi: 10.3934/dcds.2006.15.1155

[12]

Feng Ma, Mingfang Ni. A two-phase method for multidimensional number partitioning problem. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 203-206. doi: 10.3934/naco.2013.3.203

[13]

Alfredo Lorenzi, Ioan I. Vrabie. An identification problem for a linear evolution equation in a Banach space and applications. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 671-691. doi: 10.3934/dcdss.2011.4.671

[14]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[15]

Maria Rosaria Lancia, Alejandro Vélez-Santiago, Paola Vernole. A quasi-linear nonlocal Venttsel' problem of Ambrosetti–Prodi type on fractal domains. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4487-4518. doi: 10.3934/dcds.2019184

[16]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[17]

Kenta Ohi, Tatsuo Iguchi. A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1205-1240. doi: 10.3934/dcds.2009.23.1205

[18]

Victor A. Kovtunenko, Anna V. Zubkova. Mathematical modeling of a discontinuous solution of the generalized Poisson-Nernst-Planck problem in a two-phase medium. Kinetic & Related Models, 2018, 11 (1) : 119-135. doi: 10.3934/krm.2018007

[19]

Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93

[20]

Flaviano Battelli, Ken Palmer. Transversal periodic-to-periodic homoclinic orbits in singularly perturbed systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 367-387. doi: 10.3934/dcdsb.2010.14.367

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]