November  2014, 13(6): 2509-2542. doi: 10.3934/cpaa.2014.13.2509

A quasi-linear heat transmission problem in a periodic two-phase dilute composite. A functional analytic approach

1. 

Dipartimento di Matematica, Universitá degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy, Italy

Received  January 2014 Revised  June 2014 Published  July 2014

We consider a heat transmission problem for a composite material which fills the $n$-dimensional Euclidean space. The composite has a periodic structure and consists of two materials. In each periodicity cell one material occupies a cavity of size $\epsilon$, and the second material fills the remaining part of the cell. We assume that the thermal conductivities of the materials depend nonlinearly upon the temperature. We show that for $\epsilon$ small enough the problem has a solution, \textit{i.e.}, a pair of functions which determine the temperature distribution in the two materials. Then we analyze the behavior of such a solution as $\epsilon$ approaches $0$ by an approach which is alternative to those of asymptotic analysis. In particular we prove that if $n\geq 3$, the temperature can be expanded into a convergent series expansion of powers of $\epsilon$ and that if $n=2$ the temperature can be expanded into a convergent double series expansion of powers of $\epsilon$ and $\epsilon \log \epsilon$.
Citation: Massimo Lanza de Cristoforis, aolo Musolino. A quasi-linear heat transmission problem in a periodic two-phase dilute composite. A functional analytic approach. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2509-2542. doi: 10.3934/cpaa.2014.13.2509
References:
[1]

H. Ammari and H. Kang, Polarization and Moment Tensors,, Applied Mathematical Sciences, (2007).   Google Scholar

[2]

H. Ammari, H. Kang and K. Touibi, Boundary layer techniques for deriving the effective properties of composite materials,, \emph{Asymptot. Anal.}, 41 (2005), 119.   Google Scholar

[3]

J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity,, \emph{Philos. Trans. Roy. Soc. London Ser. A}, 306 (1982), 557.  doi: 10.1098/rsta.1982.0095.  Google Scholar

[4]

R. Böhme and F. Tomi, Zur Struktur der Lösungsmenge des Plateauproblems,, \emph{Math. Z.}, 133 (1973), 1.   Google Scholar

[5]

V. Bonnaillie-Noël, M. Dambrine, S. Tordeux and G. Vial, Interactions between moderately close inclusions for the Laplace equation,, \emph{Math. Models Methods Appl. Sci.}, 19 (2009), 1853.  doi: 10.1142/S021820250900398X.  Google Scholar

[6]

L. P. Castro and E. Pesetskaya, A transmission problem with imperfect contact for an unbounded multiply connected domain,, \emph{Math. Methods Appl. Sci.}, 33 (2010), 517.  doi: 10.1002/mma.1217.  Google Scholar

[7]

L. P. Castro, E. Pesetskaya and S. V. Rogosin, Effective conductivity of a composite material with non-ideal contact conditions,, \emph{Complex Var. Elliptic Equ.}, 54 (2009), 1085.  doi: 10.1080/17476930903275995.  Google Scholar

[8]

M. Dalla Riva and M. Lanza de Cristoforis, A perturbation result for the layer potentials of general second order differential operators with constant coefficients,, \emph{J. Appl. Funct. Anal.}, 5 (2010), 10.   Google Scholar

[9]

M. Dalla Riva and M. Lanza de Cristoforis, Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem: a functional analytic approach,, \emph{Complex Var. Elliptic Equ.}, 55 (2010), 771.  doi: 10.1080/17476931003628216.  Google Scholar

[10]

M. Dalla Riva and M. Lanza de Cristoforis, Weakly singular and microscopically hypersingular load perturbation for a nonlinear traction boundary value problem: a functional analytic approach,, \emph{Complex Anal. Oper. Theory}, 5 (2011), 811.  doi: 10.1007/s11785-010-0109-y.  Google Scholar

[11]

M. Dalla Riva and P. Musolino, Real analytic families of harmonic functions in a domain with a small hole,, \emph{J. Differential Equations}, 252 (2012), 6337.  doi: 10.1016/j.jde.2012.03.007.  Google Scholar

[12]

M. Dalla Riva and P. Musolino, A singularly perturbed nonideal transmission problem and application to the effective conductivity of a periodic composite,, \emph{SIAM J. Appl. Math.}, 73 (2013), 24.  doi: 10.1137/120886637.  Google Scholar

[13]

G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains,, \emph{Ann. Inst. H. Poincaré Anal. Non Linéaire}, 21 (2004), 445.  doi: 10.1016/j.anihpc.2003.05.001.  Google Scholar

[14]

K. Deimling, Nonlinear Functional Analysis,, Springer-Verlag, (1985).  doi: 10.1007/978-3-662-00547-7.  Google Scholar

[15]

P. Drygas and V. Mityushev, Effective conductivity of unidirectional cylinders with interfacial resistance,, \emph{Quart. J. Mech. Appl. Math.}, 62 (2009), 235.  doi: 10.1093/qjmam/hbp010.  Google Scholar

[16]

G. B. Folland, Introduction to Partial Differential Equations,, Princeton University Press, (1995).   Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer Verlag, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[18]

D. Henry, Topics in Nonlinear Analysis,, Trabalho de Matem\'atica, (1982).   Google Scholar

[19]

M. Iguernane, S. A. Nazarov, J. R. Roche, J. Sokolowski and K. Szulc, Topological derivatives for semilinear elliptic equations,, \emph{Int. J. Appl. Math. Comput. Sci.}, 19 (2009), 191.  doi: 10.2478/v10006-009-0016-4.  Google Scholar

[20]

A. Kirsch, Surface gradients and continuity properties for some integral operators in classical scattering theory,, \emph{Math. Methods Appl. Sci.}, 11 (1989), 789.  doi: 10.1002/mma.1670110605.  Google Scholar

[21]

M. Lanza de Cristoforis, Properties and pathologies of the composition and inversion operators in Schauder spaces,, \emph{Acc. Naz. delle Sci. detta dei XL}, 15 (1991), 93.   Google Scholar

[22]

M. Lanza de Cristoforis, Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole in Schauder spaces,, \emph{Comput. Methods Funct. Theory}, 2 (2002), 1.  doi: 10.1007/BF03321008.  Google Scholar

[23]

M. Lanza de Cristoforis, Asymptotic behavior of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach,, \emph{Complex Var. Elliptic Equ.}, 52 (2007), 945.  doi: 10.1080/17476930701485630.  Google Scholar

[24]

M. Lanza de Cristoforis, Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach,, \emph{Analysis (Munich)}, 28 (2008), 63.  doi: 10.1524/anly.2008.0903.  Google Scholar

[25]

M. Lanza de Cristoforis, Asymptotic behaviour of the solutions of a nonlinear transmission problem for the Laplace operator in a domain with a small hole. A functional analytic approach,, \emph{Complex Var. Elliptic Equ.}, 55 (2010), 269.  doi: 10.1080/17476930902999058.  Google Scholar

[26]

M. Lanza de Cristoforis and P. Musolino, A perturbation result for periodic layer potentials of general second order differential operators with constant coefficients,, \emph{Far East J. Math. Sci. (FJMS)}, 52 (2011), 75.   Google Scholar

[27]

M. Lanza de Cristoforis and P. Musolino, A real analyticity result for a nonlinear integral operator,, \emph{J. Integral Equations Appl.}, 25 (2013), 21.  doi: 10.1216/JIE-2013-25-1-21.  Google Scholar

[28]

M. Lanza de Cristoforis and P. Musolino, A singularly perturbed nonlinear Robin problem in a periodically perforated domain: a functional analytic approach,, \emph{Complex Var. Elliptic Equ.}, 58 (2013), 511.  doi: 10.1080/17476933.2011.638716.  Google Scholar

[29]

M. Lanza de Cristoforis and P. Musolino, A singularly perturbed Neumann problem for the Poisson equation in a periodically perforated domain. A functional analytic approach,, Submitted, (2014).   Google Scholar

[30]

M. Lanza de Cristoforis and L. Rossi, Real analytic dependence of simple and double layer potentials upon perturbation of the support and of the density,, \emph{J. Integral Equations Appl.}, 16 (2004), 137.  doi: 10.1216/jiea/1181075272.  Google Scholar

[31]

V. Maz'ya, A. Movchan and M. Nieves, Green's Kernels and Meso-scale Approximations in Perforated Domains,, Lecture Notes in Mathematics, (2077).  doi: 10.1007/978-3-319-00357-3.  Google Scholar

[32]

V. Maz'ya, S. Nazarov and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains,, Vols. I, (2000).   Google Scholar

[33]

C. Miranda, Sulle proprietà di regolarità di certe trasformazioni integrali,, \emph{Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I.}, 7 (1965), 303.   Google Scholar

[34]

V. V. Mityushev, Transport properties of double-periodic arrays of circular cylinders,, \emph{Z. Angew. Math. Mech.}, 77 (1997), 115.  doi: 10.1002/zamm.19970770209.  Google Scholar

[35]

V. Mityushev, Transport properties of doubly periodic arrays of circular cylinders and optimal design problems,, \emph{Appl. Math. Optim.}, 44 (2001), 17.  doi: 10.1007/s00245-001-0013-y.  Google Scholar

[36]

V. V. Mityushev and S. V. Rogosin, Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions,, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, (2000).   Google Scholar

[37]

P. Musolino, A singularly perturbed Dirichlet problem for the Laplace operator in a periodically perforated domain. A functional analytic approach,, \emph{Math. Methods Appl. Sci.}, 35 (2012), 334.  doi: 10.1002/mma.1575.  Google Scholar

[38]

P. Musolino, A singularly perturbed Dirichlet problem for the Poisson equation in a periodically perforated domain. A functional analytic approach,, in \emph{Advances in Harmonic Analysis and Operator Theory, (2013), 269.  doi: 10.1007/978-3-0348-0516-2_15.  Google Scholar

[39]

S. A. Nazarov and J. Sokołowski, Asymptotic analysis of shape functionals,, \emph{J. Math. Pures Appl.}, 82 (2003), 125.  doi: 10.1016/S0021-7824(03)00004-7.  Google Scholar

[40]

J. Schauder, Potentialtheoretische Untersuchungen,, \emph{Math. Z.}, 33 (1931), 602.  doi: 10.1007/BF01174371.  Google Scholar

[41]

J. Schauder, Bemerkung zu meiner Arbeit "Potentialtheoretische Untersuchungen I (Anhang)'',, \emph{Math. Z.}, 35 (1932), 536.  doi: 10.1007/BF01186569.  Google Scholar

[42]

J. Sivaloganathan, S. J. Spector and V. Tilakraj, The convergence of regularized minimizers for cavitation problems in nonlinear elasticity,, \emph{SIAM J. Appl. Math.}, 66 (2006), 736.  doi: 10.1137/040618965.  Google Scholar

[43]

M. S. Titcombe and M. J. Ward, Summing logarithmic expansions for elliptic equations in multiply-connected domains with small holes,, \emph{Canad. Appl. Math. Quart.}, 7 (1999), 313.   Google Scholar

[44]

T. Valent, Boundary Value Problems of Finite Elasticity. Local Theorems on Existence, Uniqueness and Analytic Dependence on Data,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4612-3736-5.  Google Scholar

[45]

M. J. Ward, W. D. Henshaw and J. B. Keller, Summing logarithmic expansions for singularly perturbed eigenvalue problems,, \emph{SIAM J. Appl. Math.}, 53 (1993), 799.  doi: 10.1137/0153039.  Google Scholar

[46]

M. J. Ward and J. B. Keller, Nonlinear eigenvalue problems under strong localized perturbations with applications to chemical reactors,, \emph{Stud. Appl. Math.}, 85 (1991), 1.   Google Scholar

[47]

M. J. Ward and J. B. Keller, Strong localized perturbations of eigenvalue problems,, \emph{SIAM J. Appl. Math.}, 53 (1993), 770.  doi: 10.1137/0153038.  Google Scholar

show all references

References:
[1]

H. Ammari and H. Kang, Polarization and Moment Tensors,, Applied Mathematical Sciences, (2007).   Google Scholar

[2]

H. Ammari, H. Kang and K. Touibi, Boundary layer techniques for deriving the effective properties of composite materials,, \emph{Asymptot. Anal.}, 41 (2005), 119.   Google Scholar

[3]

J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity,, \emph{Philos. Trans. Roy. Soc. London Ser. A}, 306 (1982), 557.  doi: 10.1098/rsta.1982.0095.  Google Scholar

[4]

R. Böhme and F. Tomi, Zur Struktur der Lösungsmenge des Plateauproblems,, \emph{Math. Z.}, 133 (1973), 1.   Google Scholar

[5]

V. Bonnaillie-Noël, M. Dambrine, S. Tordeux and G. Vial, Interactions between moderately close inclusions for the Laplace equation,, \emph{Math. Models Methods Appl. Sci.}, 19 (2009), 1853.  doi: 10.1142/S021820250900398X.  Google Scholar

[6]

L. P. Castro and E. Pesetskaya, A transmission problem with imperfect contact for an unbounded multiply connected domain,, \emph{Math. Methods Appl. Sci.}, 33 (2010), 517.  doi: 10.1002/mma.1217.  Google Scholar

[7]

L. P. Castro, E. Pesetskaya and S. V. Rogosin, Effective conductivity of a composite material with non-ideal contact conditions,, \emph{Complex Var. Elliptic Equ.}, 54 (2009), 1085.  doi: 10.1080/17476930903275995.  Google Scholar

[8]

M. Dalla Riva and M. Lanza de Cristoforis, A perturbation result for the layer potentials of general second order differential operators with constant coefficients,, \emph{J. Appl. Funct. Anal.}, 5 (2010), 10.   Google Scholar

[9]

M. Dalla Riva and M. Lanza de Cristoforis, Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem: a functional analytic approach,, \emph{Complex Var. Elliptic Equ.}, 55 (2010), 771.  doi: 10.1080/17476931003628216.  Google Scholar

[10]

M. Dalla Riva and M. Lanza de Cristoforis, Weakly singular and microscopically hypersingular load perturbation for a nonlinear traction boundary value problem: a functional analytic approach,, \emph{Complex Anal. Oper. Theory}, 5 (2011), 811.  doi: 10.1007/s11785-010-0109-y.  Google Scholar

[11]

M. Dalla Riva and P. Musolino, Real analytic families of harmonic functions in a domain with a small hole,, \emph{J. Differential Equations}, 252 (2012), 6337.  doi: 10.1016/j.jde.2012.03.007.  Google Scholar

[12]

M. Dalla Riva and P. Musolino, A singularly perturbed nonideal transmission problem and application to the effective conductivity of a periodic composite,, \emph{SIAM J. Appl. Math.}, 73 (2013), 24.  doi: 10.1137/120886637.  Google Scholar

[13]

G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains,, \emph{Ann. Inst. H. Poincaré Anal. Non Linéaire}, 21 (2004), 445.  doi: 10.1016/j.anihpc.2003.05.001.  Google Scholar

[14]

K. Deimling, Nonlinear Functional Analysis,, Springer-Verlag, (1985).  doi: 10.1007/978-3-662-00547-7.  Google Scholar

[15]

P. Drygas and V. Mityushev, Effective conductivity of unidirectional cylinders with interfacial resistance,, \emph{Quart. J. Mech. Appl. Math.}, 62 (2009), 235.  doi: 10.1093/qjmam/hbp010.  Google Scholar

[16]

G. B. Folland, Introduction to Partial Differential Equations,, Princeton University Press, (1995).   Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer Verlag, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[18]

D. Henry, Topics in Nonlinear Analysis,, Trabalho de Matem\'atica, (1982).   Google Scholar

[19]

M. Iguernane, S. A. Nazarov, J. R. Roche, J. Sokolowski and K. Szulc, Topological derivatives for semilinear elliptic equations,, \emph{Int. J. Appl. Math. Comput. Sci.}, 19 (2009), 191.  doi: 10.2478/v10006-009-0016-4.  Google Scholar

[20]

A. Kirsch, Surface gradients and continuity properties for some integral operators in classical scattering theory,, \emph{Math. Methods Appl. Sci.}, 11 (1989), 789.  doi: 10.1002/mma.1670110605.  Google Scholar

[21]

M. Lanza de Cristoforis, Properties and pathologies of the composition and inversion operators in Schauder spaces,, \emph{Acc. Naz. delle Sci. detta dei XL}, 15 (1991), 93.   Google Scholar

[22]

M. Lanza de Cristoforis, Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole in Schauder spaces,, \emph{Comput. Methods Funct. Theory}, 2 (2002), 1.  doi: 10.1007/BF03321008.  Google Scholar

[23]

M. Lanza de Cristoforis, Asymptotic behavior of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach,, \emph{Complex Var. Elliptic Equ.}, 52 (2007), 945.  doi: 10.1080/17476930701485630.  Google Scholar

[24]

M. Lanza de Cristoforis, Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach,, \emph{Analysis (Munich)}, 28 (2008), 63.  doi: 10.1524/anly.2008.0903.  Google Scholar

[25]

M. Lanza de Cristoforis, Asymptotic behaviour of the solutions of a nonlinear transmission problem for the Laplace operator in a domain with a small hole. A functional analytic approach,, \emph{Complex Var. Elliptic Equ.}, 55 (2010), 269.  doi: 10.1080/17476930902999058.  Google Scholar

[26]

M. Lanza de Cristoforis and P. Musolino, A perturbation result for periodic layer potentials of general second order differential operators with constant coefficients,, \emph{Far East J. Math. Sci. (FJMS)}, 52 (2011), 75.   Google Scholar

[27]

M. Lanza de Cristoforis and P. Musolino, A real analyticity result for a nonlinear integral operator,, \emph{J. Integral Equations Appl.}, 25 (2013), 21.  doi: 10.1216/JIE-2013-25-1-21.  Google Scholar

[28]

M. Lanza de Cristoforis and P. Musolino, A singularly perturbed nonlinear Robin problem in a periodically perforated domain: a functional analytic approach,, \emph{Complex Var. Elliptic Equ.}, 58 (2013), 511.  doi: 10.1080/17476933.2011.638716.  Google Scholar

[29]

M. Lanza de Cristoforis and P. Musolino, A singularly perturbed Neumann problem for the Poisson equation in a periodically perforated domain. A functional analytic approach,, Submitted, (2014).   Google Scholar

[30]

M. Lanza de Cristoforis and L. Rossi, Real analytic dependence of simple and double layer potentials upon perturbation of the support and of the density,, \emph{J. Integral Equations Appl.}, 16 (2004), 137.  doi: 10.1216/jiea/1181075272.  Google Scholar

[31]

V. Maz'ya, A. Movchan and M. Nieves, Green's Kernels and Meso-scale Approximations in Perforated Domains,, Lecture Notes in Mathematics, (2077).  doi: 10.1007/978-3-319-00357-3.  Google Scholar

[32]

V. Maz'ya, S. Nazarov and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains,, Vols. I, (2000).   Google Scholar

[33]

C. Miranda, Sulle proprietà di regolarità di certe trasformazioni integrali,, \emph{Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I.}, 7 (1965), 303.   Google Scholar

[34]

V. V. Mityushev, Transport properties of double-periodic arrays of circular cylinders,, \emph{Z. Angew. Math. Mech.}, 77 (1997), 115.  doi: 10.1002/zamm.19970770209.  Google Scholar

[35]

V. Mityushev, Transport properties of doubly periodic arrays of circular cylinders and optimal design problems,, \emph{Appl. Math. Optim.}, 44 (2001), 17.  doi: 10.1007/s00245-001-0013-y.  Google Scholar

[36]

V. V. Mityushev and S. V. Rogosin, Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions,, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, (2000).   Google Scholar

[37]

P. Musolino, A singularly perturbed Dirichlet problem for the Laplace operator in a periodically perforated domain. A functional analytic approach,, \emph{Math. Methods Appl. Sci.}, 35 (2012), 334.  doi: 10.1002/mma.1575.  Google Scholar

[38]

P. Musolino, A singularly perturbed Dirichlet problem for the Poisson equation in a periodically perforated domain. A functional analytic approach,, in \emph{Advances in Harmonic Analysis and Operator Theory, (2013), 269.  doi: 10.1007/978-3-0348-0516-2_15.  Google Scholar

[39]

S. A. Nazarov and J. Sokołowski, Asymptotic analysis of shape functionals,, \emph{J. Math. Pures Appl.}, 82 (2003), 125.  doi: 10.1016/S0021-7824(03)00004-7.  Google Scholar

[40]

J. Schauder, Potentialtheoretische Untersuchungen,, \emph{Math. Z.}, 33 (1931), 602.  doi: 10.1007/BF01174371.  Google Scholar

[41]

J. Schauder, Bemerkung zu meiner Arbeit "Potentialtheoretische Untersuchungen I (Anhang)'',, \emph{Math. Z.}, 35 (1932), 536.  doi: 10.1007/BF01186569.  Google Scholar

[42]

J. Sivaloganathan, S. J. Spector and V. Tilakraj, The convergence of regularized minimizers for cavitation problems in nonlinear elasticity,, \emph{SIAM J. Appl. Math.}, 66 (2006), 736.  doi: 10.1137/040618965.  Google Scholar

[43]

M. S. Titcombe and M. J. Ward, Summing logarithmic expansions for elliptic equations in multiply-connected domains with small holes,, \emph{Canad. Appl. Math. Quart.}, 7 (1999), 313.   Google Scholar

[44]

T. Valent, Boundary Value Problems of Finite Elasticity. Local Theorems on Existence, Uniqueness and Analytic Dependence on Data,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4612-3736-5.  Google Scholar

[45]

M. J. Ward, W. D. Henshaw and J. B. Keller, Summing logarithmic expansions for singularly perturbed eigenvalue problems,, \emph{SIAM J. Appl. Math.}, 53 (1993), 799.  doi: 10.1137/0153039.  Google Scholar

[46]

M. J. Ward and J. B. Keller, Nonlinear eigenvalue problems under strong localized perturbations with applications to chemical reactors,, \emph{Stud. Appl. Math.}, 85 (1991), 1.   Google Scholar

[47]

M. J. Ward and J. B. Keller, Strong localized perturbations of eigenvalue problems,, \emph{SIAM J. Appl. Math.}, 53 (1993), 770.  doi: 10.1137/0153038.  Google Scholar

[1]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[2]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[3]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[4]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[5]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[6]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[7]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[12]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[13]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[14]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[15]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[16]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[17]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[18]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[19]

Andrea Braides, Antonio Tribuzio. Perturbed minimizing movements of families of functionals. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 373-393. doi: 10.3934/dcdss.2020324

[20]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]