November  2014, 13(6): 2509-2542. doi: 10.3934/cpaa.2014.13.2509

A quasi-linear heat transmission problem in a periodic two-phase dilute composite. A functional analytic approach

1. 

Dipartimento di Matematica, Universitá degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy, Italy

Received  January 2014 Revised  June 2014 Published  July 2014

We consider a heat transmission problem for a composite material which fills the $n$-dimensional Euclidean space. The composite has a periodic structure and consists of two materials. In each periodicity cell one material occupies a cavity of size $\epsilon$, and the second material fills the remaining part of the cell. We assume that the thermal conductivities of the materials depend nonlinearly upon the temperature. We show that for $\epsilon$ small enough the problem has a solution, \textit{i.e.}, a pair of functions which determine the temperature distribution in the two materials. Then we analyze the behavior of such a solution as $\epsilon$ approaches $0$ by an approach which is alternative to those of asymptotic analysis. In particular we prove that if $n\geq 3$, the temperature can be expanded into a convergent series expansion of powers of $\epsilon$ and that if $n=2$ the temperature can be expanded into a convergent double series expansion of powers of $\epsilon$ and $\epsilon \log \epsilon$.
Citation: Massimo Lanza de Cristoforis, aolo Musolino. A quasi-linear heat transmission problem in a periodic two-phase dilute composite. A functional analytic approach. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2509-2542. doi: 10.3934/cpaa.2014.13.2509
References:
[1]

H. Ammari and H. Kang, Polarization and Moment Tensors, Applied Mathematical Sciences, 162, Springer, New York, 2007.  Google Scholar

[2]

H. Ammari, H. Kang and K. Touibi, Boundary layer techniques for deriving the effective properties of composite materials, Asymptot. Anal., 41 (2005), 119-140.  Google Scholar

[3]

J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. London Ser. A, 306 (1982), 557-611. doi: 10.1098/rsta.1982.0095.  Google Scholar

[4]

R. Böhme and F. Tomi, Zur Struktur der Lösungsmenge des Plateauproblems, Math. Z., 133 (1973), 1-29.  Google Scholar

[5]

V. Bonnaillie-Noël, M. Dambrine, S. Tordeux and G. Vial, Interactions between moderately close inclusions for the Laplace equation, Math. Models Methods Appl. Sci., 19 (2009), 1853-1882. doi: 10.1142/S021820250900398X.  Google Scholar

[6]

L. P. Castro and E. Pesetskaya, A transmission problem with imperfect contact for an unbounded multiply connected domain, Math. Methods Appl. Sci., 33 (2010), 517-526. doi: 10.1002/mma.1217.  Google Scholar

[7]

L. P. Castro, E. Pesetskaya and S. V. Rogosin, Effective conductivity of a composite material with non-ideal contact conditions, Complex Var. Elliptic Equ., 54 (2009), 1085-1100. doi: 10.1080/17476930903275995.  Google Scholar

[8]

M. Dalla Riva and M. Lanza de Cristoforis, A perturbation result for the layer potentials of general second order differential operators with constant coefficients, J. Appl. Funct. Anal., 5 (2010), 10-30.  Google Scholar

[9]

M. Dalla Riva and M. Lanza de Cristoforis, Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem: a functional analytic approach, Complex Var. Elliptic Equ., 55 (2010), 771-794. doi: 10.1080/17476931003628216.  Google Scholar

[10]

M. Dalla Riva and M. Lanza de Cristoforis, Weakly singular and microscopically hypersingular load perturbation for a nonlinear traction boundary value problem: a functional analytic approach, Complex Anal. Oper. Theory, 5 (2011), 811-833. doi: 10.1007/s11785-010-0109-y.  Google Scholar

[11]

M. Dalla Riva and P. Musolino, Real analytic families of harmonic functions in a domain with a small hole, J. Differential Equations, 252 (2012), 6337-6355. doi: 10.1016/j.jde.2012.03.007.  Google Scholar

[12]

M. Dalla Riva and P. Musolino, A singularly perturbed nonideal transmission problem and application to the effective conductivity of a periodic composite, SIAM J. Appl. Math., 73 (2013), 24-46. doi: 10.1137/120886637.  Google Scholar

[13]

G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 445-486. doi: 10.1016/j.anihpc.2003.05.001.  Google Scholar

[14]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[15]

P. Drygas and V. Mityushev, Effective conductivity of unidirectional cylinders with interfacial resistance, Quart. J. Mech. Appl. Math., 62 (2009), 235-262. doi: 10.1093/qjmam/hbp010.  Google Scholar

[16]

G. B. Folland, Introduction to Partial Differential Equations, Princeton University Press, Princeton, NJ, second edition, 1995.  Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[18]

D. Henry, Topics in Nonlinear Analysis, Trabalho de Matemática, 192, Brasilia, 1982. Google Scholar

[19]

M. Iguernane, S. A. Nazarov, J. R. Roche, J. Sokolowski and K. Szulc, Topological derivatives for semilinear elliptic equations, Int. J. Appl. Math. Comput. Sci., 19 (2009), 191-205. doi: 10.2478/v10006-009-0016-4.  Google Scholar

[20]

A. Kirsch, Surface gradients and continuity properties for some integral operators in classical scattering theory, Math. Methods Appl. Sci., 11 (1989), 789-804. doi: 10.1002/mma.1670110605.  Google Scholar

[21]

M. Lanza de Cristoforis, Properties and pathologies of the composition and inversion operators in Schauder spaces, Acc. Naz. delle Sci. detta dei XL, 15 (1991), 93-109.  Google Scholar

[22]

M. Lanza de Cristoforis, Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole in Schauder spaces, Comput. Methods Funct. Theory, 2 (2002), 1-27. doi: 10.1007/BF03321008.  Google Scholar

[23]

M. Lanza de Cristoforis, Asymptotic behavior of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach, Complex Var. Elliptic Equ., 52 (2007), 945-977. doi: 10.1080/17476930701485630.  Google Scholar

[24]

M. Lanza de Cristoforis, Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach, Analysis (Munich), 28 (2008), 63-93. doi: 10.1524/anly.2008.0903.  Google Scholar

[25]

M. Lanza de Cristoforis, Asymptotic behaviour of the solutions of a nonlinear transmission problem for the Laplace operator in a domain with a small hole. A functional analytic approach, Complex Var. Elliptic Equ., 55 (2010), 269-303. doi: 10.1080/17476930902999058.  Google Scholar

[26]

M. Lanza de Cristoforis and P. Musolino, A perturbation result for periodic layer potentials of general second order differential operators with constant coefficients, Far East J. Math. Sci. (FJMS), 52 (2011), 75-120.  Google Scholar

[27]

M. Lanza de Cristoforis and P. Musolino, A real analyticity result for a nonlinear integral operator, J. Integral Equations Appl., 25 (2013), 21-46. doi: 10.1216/JIE-2013-25-1-21.  Google Scholar

[28]

M. Lanza de Cristoforis and P. Musolino, A singularly perturbed nonlinear Robin problem in a periodically perforated domain: a functional analytic approach, Complex Var. Elliptic Equ., 58 (2013), 511-536. doi: 10.1080/17476933.2011.638716.  Google Scholar

[29]

M. Lanza de Cristoforis and P. Musolino, A singularly perturbed Neumann problem for the Poisson equation in a periodically perforated domain. A functional analytic approach, Submitted, 2014. Google Scholar

[30]

M. Lanza de Cristoforis and L. Rossi, Real analytic dependence of simple and double layer potentials upon perturbation of the support and of the density, J. Integral Equations Appl., 16 (2004), 137-174. doi: 10.1216/jiea/1181075272.  Google Scholar

[31]

V. Maz'ya, A. Movchan and M. Nieves, Green's Kernels and Meso-scale Approximations in Perforated Domains, Lecture Notes in Mathematics, 2077, Springer, Berlin, 2013. doi: 10.1007/978-3-319-00357-3.  Google Scholar

[32]

V. Maz'ya, S. Nazarov and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Vols. I, II, Operator Theory: Advances and Applications, 111, 112, Birkhäuser Verlag, Basel, 2000.  Google Scholar

[33]

C. Miranda, Sulle proprietà di regolarità di certe trasformazioni integrali, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I., 7 (1965), 303-336.  Google Scholar

[34]

V. V. Mityushev, Transport properties of double-periodic arrays of circular cylinders, Z. Angew. Math. Mech., 77 (1997), 115-120. doi: 10.1002/zamm.19970770209.  Google Scholar

[35]

V. Mityushev, Transport properties of doubly periodic arrays of circular cylinders and optimal design problems, Appl. Math. Optim., 44 (2001), 17-31. doi: 10.1007/s00245-001-0013-y.  Google Scholar

[36]

V. V. Mityushev and S. V. Rogosin, Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 108, Chapman & Hall/CRC, Boca Raton, FL, 2000.  Google Scholar

[37]

P. Musolino, A singularly perturbed Dirichlet problem for the Laplace operator in a periodically perforated domain. A functional analytic approach, Math. Methods Appl. Sci., 35 (2012), 334-349. doi: 10.1002/mma.1575.  Google Scholar

[38]

P. Musolino, A singularly perturbed Dirichlet problem for the Poisson equation in a periodically perforated domain. A functional analytic approach, in Advances in Harmonic Analysis and Operator Theory, The Stefan Samko Anniversary Volume (eds. A. Almeida, L. Castro and F.-O. Speck), Operator Theory: Advances and Applications 229, Birkhäuser Verlag, (2013), 269-289. doi: 10.1007/978-3-0348-0516-2_15.  Google Scholar

[39]

S. A. Nazarov and J. Sokołowski, Asymptotic analysis of shape functionals, J. Math. Pures Appl., 82 (2003), 125-196. doi: 10.1016/S0021-7824(03)00004-7.  Google Scholar

[40]

J. Schauder, Potentialtheoretische Untersuchungen, Math. Z., 33 (1931), 602-640. doi: 10.1007/BF01174371.  Google Scholar

[41]

J. Schauder, Bemerkung zu meiner Arbeit "Potentialtheoretische Untersuchungen I (Anhang)'', Math. Z., 35 (1932), 536-538. doi: 10.1007/BF01186569.  Google Scholar

[42]

J. Sivaloganathan, S. J. Spector and V. Tilakraj, The convergence of regularized minimizers for cavitation problems in nonlinear elasticity, SIAM J. Appl. Math., 66 (2006), 736-757. doi: 10.1137/040618965.  Google Scholar

[43]

M. S. Titcombe and M. J. Ward, Summing logarithmic expansions for elliptic equations in multiply-connected domains with small holes, Canad. Appl. Math. Quart., 7 (1999), 313-343.  Google Scholar

[44]

T. Valent, Boundary Value Problems of Finite Elasticity. Local Theorems on Existence, Uniqueness and Analytic Dependence on Data, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-3736-5.  Google Scholar

[45]

M. J. Ward, W. D. Henshaw and J. B. Keller, Summing logarithmic expansions for singularly perturbed eigenvalue problems, SIAM J. Appl. Math., 53 (1993), 799-828. doi: 10.1137/0153039.  Google Scholar

[46]

M. J. Ward and J. B. Keller, Nonlinear eigenvalue problems under strong localized perturbations with applications to chemical reactors, Stud. Appl. Math., 85 (1991), 1-28.  Google Scholar

[47]

M. J. Ward and J. B. Keller, Strong localized perturbations of eigenvalue problems, SIAM J. Appl. Math., 53 (1993), 770-798. doi: 10.1137/0153038.  Google Scholar

show all references

References:
[1]

H. Ammari and H. Kang, Polarization and Moment Tensors, Applied Mathematical Sciences, 162, Springer, New York, 2007.  Google Scholar

[2]

H. Ammari, H. Kang and K. Touibi, Boundary layer techniques for deriving the effective properties of composite materials, Asymptot. Anal., 41 (2005), 119-140.  Google Scholar

[3]

J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. London Ser. A, 306 (1982), 557-611. doi: 10.1098/rsta.1982.0095.  Google Scholar

[4]

R. Böhme and F. Tomi, Zur Struktur der Lösungsmenge des Plateauproblems, Math. Z., 133 (1973), 1-29.  Google Scholar

[5]

V. Bonnaillie-Noël, M. Dambrine, S. Tordeux and G. Vial, Interactions between moderately close inclusions for the Laplace equation, Math. Models Methods Appl. Sci., 19 (2009), 1853-1882. doi: 10.1142/S021820250900398X.  Google Scholar

[6]

L. P. Castro and E. Pesetskaya, A transmission problem with imperfect contact for an unbounded multiply connected domain, Math. Methods Appl. Sci., 33 (2010), 517-526. doi: 10.1002/mma.1217.  Google Scholar

[7]

L. P. Castro, E. Pesetskaya and S. V. Rogosin, Effective conductivity of a composite material with non-ideal contact conditions, Complex Var. Elliptic Equ., 54 (2009), 1085-1100. doi: 10.1080/17476930903275995.  Google Scholar

[8]

M. Dalla Riva and M. Lanza de Cristoforis, A perturbation result for the layer potentials of general second order differential operators with constant coefficients, J. Appl. Funct. Anal., 5 (2010), 10-30.  Google Scholar

[9]

M. Dalla Riva and M. Lanza de Cristoforis, Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem: a functional analytic approach, Complex Var. Elliptic Equ., 55 (2010), 771-794. doi: 10.1080/17476931003628216.  Google Scholar

[10]

M. Dalla Riva and M. Lanza de Cristoforis, Weakly singular and microscopically hypersingular load perturbation for a nonlinear traction boundary value problem: a functional analytic approach, Complex Anal. Oper. Theory, 5 (2011), 811-833. doi: 10.1007/s11785-010-0109-y.  Google Scholar

[11]

M. Dalla Riva and P. Musolino, Real analytic families of harmonic functions in a domain with a small hole, J. Differential Equations, 252 (2012), 6337-6355. doi: 10.1016/j.jde.2012.03.007.  Google Scholar

[12]

M. Dalla Riva and P. Musolino, A singularly perturbed nonideal transmission problem and application to the effective conductivity of a periodic composite, SIAM J. Appl. Math., 73 (2013), 24-46. doi: 10.1137/120886637.  Google Scholar

[13]

G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 445-486. doi: 10.1016/j.anihpc.2003.05.001.  Google Scholar

[14]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[15]

P. Drygas and V. Mityushev, Effective conductivity of unidirectional cylinders with interfacial resistance, Quart. J. Mech. Appl. Math., 62 (2009), 235-262. doi: 10.1093/qjmam/hbp010.  Google Scholar

[16]

G. B. Folland, Introduction to Partial Differential Equations, Princeton University Press, Princeton, NJ, second edition, 1995.  Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[18]

D. Henry, Topics in Nonlinear Analysis, Trabalho de Matemática, 192, Brasilia, 1982. Google Scholar

[19]

M. Iguernane, S. A. Nazarov, J. R. Roche, J. Sokolowski and K. Szulc, Topological derivatives for semilinear elliptic equations, Int. J. Appl. Math. Comput. Sci., 19 (2009), 191-205. doi: 10.2478/v10006-009-0016-4.  Google Scholar

[20]

A. Kirsch, Surface gradients and continuity properties for some integral operators in classical scattering theory, Math. Methods Appl. Sci., 11 (1989), 789-804. doi: 10.1002/mma.1670110605.  Google Scholar

[21]

M. Lanza de Cristoforis, Properties and pathologies of the composition and inversion operators in Schauder spaces, Acc. Naz. delle Sci. detta dei XL, 15 (1991), 93-109.  Google Scholar

[22]

M. Lanza de Cristoforis, Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole in Schauder spaces, Comput. Methods Funct. Theory, 2 (2002), 1-27. doi: 10.1007/BF03321008.  Google Scholar

[23]

M. Lanza de Cristoforis, Asymptotic behavior of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach, Complex Var. Elliptic Equ., 52 (2007), 945-977. doi: 10.1080/17476930701485630.  Google Scholar

[24]

M. Lanza de Cristoforis, Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach, Analysis (Munich), 28 (2008), 63-93. doi: 10.1524/anly.2008.0903.  Google Scholar

[25]

M. Lanza de Cristoforis, Asymptotic behaviour of the solutions of a nonlinear transmission problem for the Laplace operator in a domain with a small hole. A functional analytic approach, Complex Var. Elliptic Equ., 55 (2010), 269-303. doi: 10.1080/17476930902999058.  Google Scholar

[26]

M. Lanza de Cristoforis and P. Musolino, A perturbation result for periodic layer potentials of general second order differential operators with constant coefficients, Far East J. Math. Sci. (FJMS), 52 (2011), 75-120.  Google Scholar

[27]

M. Lanza de Cristoforis and P. Musolino, A real analyticity result for a nonlinear integral operator, J. Integral Equations Appl., 25 (2013), 21-46. doi: 10.1216/JIE-2013-25-1-21.  Google Scholar

[28]

M. Lanza de Cristoforis and P. Musolino, A singularly perturbed nonlinear Robin problem in a periodically perforated domain: a functional analytic approach, Complex Var. Elliptic Equ., 58 (2013), 511-536. doi: 10.1080/17476933.2011.638716.  Google Scholar

[29]

M. Lanza de Cristoforis and P. Musolino, A singularly perturbed Neumann problem for the Poisson equation in a periodically perforated domain. A functional analytic approach, Submitted, 2014. Google Scholar

[30]

M. Lanza de Cristoforis and L. Rossi, Real analytic dependence of simple and double layer potentials upon perturbation of the support and of the density, J. Integral Equations Appl., 16 (2004), 137-174. doi: 10.1216/jiea/1181075272.  Google Scholar

[31]

V. Maz'ya, A. Movchan and M. Nieves, Green's Kernels and Meso-scale Approximations in Perforated Domains, Lecture Notes in Mathematics, 2077, Springer, Berlin, 2013. doi: 10.1007/978-3-319-00357-3.  Google Scholar

[32]

V. Maz'ya, S. Nazarov and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Vols. I, II, Operator Theory: Advances and Applications, 111, 112, Birkhäuser Verlag, Basel, 2000.  Google Scholar

[33]

C. Miranda, Sulle proprietà di regolarità di certe trasformazioni integrali, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I., 7 (1965), 303-336.  Google Scholar

[34]

V. V. Mityushev, Transport properties of double-periodic arrays of circular cylinders, Z. Angew. Math. Mech., 77 (1997), 115-120. doi: 10.1002/zamm.19970770209.  Google Scholar

[35]

V. Mityushev, Transport properties of doubly periodic arrays of circular cylinders and optimal design problems, Appl. Math. Optim., 44 (2001), 17-31. doi: 10.1007/s00245-001-0013-y.  Google Scholar

[36]

V. V. Mityushev and S. V. Rogosin, Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 108, Chapman & Hall/CRC, Boca Raton, FL, 2000.  Google Scholar

[37]

P. Musolino, A singularly perturbed Dirichlet problem for the Laplace operator in a periodically perforated domain. A functional analytic approach, Math. Methods Appl. Sci., 35 (2012), 334-349. doi: 10.1002/mma.1575.  Google Scholar

[38]

P. Musolino, A singularly perturbed Dirichlet problem for the Poisson equation in a periodically perforated domain. A functional analytic approach, in Advances in Harmonic Analysis and Operator Theory, The Stefan Samko Anniversary Volume (eds. A. Almeida, L. Castro and F.-O. Speck), Operator Theory: Advances and Applications 229, Birkhäuser Verlag, (2013), 269-289. doi: 10.1007/978-3-0348-0516-2_15.  Google Scholar

[39]

S. A. Nazarov and J. Sokołowski, Asymptotic analysis of shape functionals, J. Math. Pures Appl., 82 (2003), 125-196. doi: 10.1016/S0021-7824(03)00004-7.  Google Scholar

[40]

J. Schauder, Potentialtheoretische Untersuchungen, Math. Z., 33 (1931), 602-640. doi: 10.1007/BF01174371.  Google Scholar

[41]

J. Schauder, Bemerkung zu meiner Arbeit "Potentialtheoretische Untersuchungen I (Anhang)'', Math. Z., 35 (1932), 536-538. doi: 10.1007/BF01186569.  Google Scholar

[42]

J. Sivaloganathan, S. J. Spector and V. Tilakraj, The convergence of regularized minimizers for cavitation problems in nonlinear elasticity, SIAM J. Appl. Math., 66 (2006), 736-757. doi: 10.1137/040618965.  Google Scholar

[43]

M. S. Titcombe and M. J. Ward, Summing logarithmic expansions for elliptic equations in multiply-connected domains with small holes, Canad. Appl. Math. Quart., 7 (1999), 313-343.  Google Scholar

[44]

T. Valent, Boundary Value Problems of Finite Elasticity. Local Theorems on Existence, Uniqueness and Analytic Dependence on Data, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-3736-5.  Google Scholar

[45]

M. J. Ward, W. D. Henshaw and J. B. Keller, Summing logarithmic expansions for singularly perturbed eigenvalue problems, SIAM J. Appl. Math., 53 (1993), 799-828. doi: 10.1137/0153039.  Google Scholar

[46]

M. J. Ward and J. B. Keller, Nonlinear eigenvalue problems under strong localized perturbations with applications to chemical reactors, Stud. Appl. Math., 85 (1991), 1-28.  Google Scholar

[47]

M. J. Ward and J. B. Keller, Strong localized perturbations of eigenvalue problems, SIAM J. Appl. Math., 53 (1993), 770-798. doi: 10.1137/0153038.  Google Scholar

[1]

Vasily Denisov and Andrey Muravnik. On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations. Electronic Research Announcements, 2003, 9: 88-93.

[2]

Yongqin Liu, Shuichi Kawashima. Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 1113-1139. doi: 10.3934/dcds.2011.29.1113

[3]

Juncheng Wei, Jun Yang. Toda system and interior clustering line concentration for a singularly perturbed Neumann problem in two dimensional domain. Discrete & Continuous Dynamical Systems, 2008, 22 (3) : 465-508. doi: 10.3934/dcds.2008.22.465

[4]

Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control & Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040

[5]

Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the two-phase Stefan problem. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5379-5405. doi: 10.3934/dcds.2013.33.5379

[6]

Marianne Korten, Charles N. Moore. Regularity for solutions of the two-phase Stefan problem. Communications on Pure & Applied Analysis, 2008, 7 (3) : 591-600. doi: 10.3934/cpaa.2008.7.591

[7]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, 2021, 15 (5) : 1015-1033. doi: 10.3934/ipi.2021026

[8]

Eberhard Bänsch, Steffen Basting, Rolf Krahl. Numerical simulation of two-phase flows with heat and mass transfer. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2325-2347. doi: 10.3934/dcds.2015.35.2325

[9]

Viorel Barbu, Gabriela Marinoschi. An identification problem for a linear evolution equation in a banach space. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1429-1440. doi: 10.3934/dcdss.2020081

[10]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[11]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[12]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 1-39. doi: 10.3934/dcds.2010.28.1

[13]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete & Continuous Dynamical Systems, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[14]

V. S. Manoranjan, Hong-Ming Yin, R. Showalter. On two-phase Stefan problem arising from a microwave heating process. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1155-1168. doi: 10.3934/dcds.2006.15.1155

[15]

Feng Ma, Mingfang Ni. A two-phase method for multidimensional number partitioning problem. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 203-206. doi: 10.3934/naco.2013.3.203

[16]

Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090

[17]

Xueqin Peng, Gao Jia. Existence and asymptotical behavior of positive solutions for the Schrödinger-Poisson system with double quasi-linear terms. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021134

[18]

Alfredo Lorenzi, Ioan I. Vrabie. An identification problem for a linear evolution equation in a Banach space and applications. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 671-691. doi: 10.3934/dcdss.2011.4.671

[19]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[20]

Maria Rosaria Lancia, Alejandro Vélez-Santiago, Paola Vernole. A quasi-linear nonlocal Venttsel' problem of Ambrosetti–Prodi type on fractal domains. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4487-4518. doi: 10.3934/dcds.2019184

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]