• Previous Article
    Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains
  • CPAA Home
  • This Issue
  • Next Article
    A quasi-linear heat transmission problem in a periodic two-phase dilute composite. A functional analytic approach
November  2014, 13(6): 2543-2557. doi: 10.3934/cpaa.2014.13.2543

Pullback attractors for non-autonomous evolution equations with spatially variable exponents

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

Instituto de Matemática e Computaçã, Universidade Federal de Itajubá, 37500-903 Itajubá MG, Brazil

Received  February 2014 Revised  June 2014 Published  July 2014

Dissipative problems in electrorheological fluids, porous media and image processing often involve spatially dependent exponents. They also include time-dependent terms as in equation \begin{eqnarray} \frac{\partial u_\lambda}{\partial t}(t)-\textrm{div}(D_\lambda(t)|\nabla u_\lambda(t)|^{p(x)-2}\nabla u_\lambda(t))+|u_\lambda(t)|^{p(x)-2}u_\lambda(t) = B(t,u_\lambda(t)) \end{eqnarray} on a bounded smooth domain $\Omega$ in $\mathbb{R}^n$, $n\geq 1$, with a homogeneous Neumann boundary condition, where the exponent $p(\cdot)\in C(\bar{\Omega}, \mathbb{R}^+)$ satisfying $p^-$ $:=$ $\min p(x)$ $>$ $2$, and $\lambda$ $\in$ $[0,\infty)$ is a parameter.
The existence and upper semicontinuity of pullback attractors are established for this equation under the assumptions, amongst others, that $B$ is globally Lipschitz in its second variable and $D_\lambda$ $ \in $ $L^\infty([\tau,T] \times \Omega, \mathbb{R}^+)$ is bounded from above and below, is monotonically nonincreasing in time and continuous in the parameter $\lambda$. The global existence and uniqueness of strong solutions is obtained through results of Yotsutani.
Citation: Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543
References:
[1]

R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing,, \emph{Computers and Mathematics with Applications}, 56 (2008), 874.  doi: 10.1016/j.camwa.2008.01.017.  Google Scholar

[2]

G. Akagi and K. Matsuura, Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)-$Laplacian,, \emph{Discrete Contin. Dyn. Syst. 2011, Suppl. Vol. I (2011), 22.   Google Scholar

[3]

G. Akagi and K. Matsuura, Nonlinear diffusion equations driven by $p(\cdot)-$Laplacian,, \emph{NoDEA Nonlinear Differential Equations Appl.}, 20 (2013), 37.  doi: 10.1007/s00030-012-0153-6.  Google Scholar

[4]

B. Amaziane, L. Pankratov and A. Piatnitski, Nonlinear flow through double porosity media in variable exponent Sobolev spaces,, \emph{Nonlinear Anal.: Real World Applications}, 10 (2009), 2521.  doi: 10.1016/j.nonrwa.2008.05.008.  Google Scholar

[5]

S. N. Antonstev and S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions,, \emph{Nonlinear Analysis}, 60 (2005), 515.  doi: 10.1016/j.na.2004.09.026.  Google Scholar

[6]

S. N. Antontsev and S. Shmarev, Anisotropic parabolic equations with variable nonlinearity,, \emph{Publications Mathematiques}, 53 (2009), 355.  doi: 10.5565/PUBLMAT-53209-04.  Google Scholar

[7]

S. N. Antontsev and S. Shmarev, Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity,, \emph{J. Mathematical Sciences}, 150 (2008), 2289.  doi: 10.1007/s10958-008-0129-6.  Google Scholar

[8]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Space,, Noordhoff International Publishing, (1976).   Google Scholar

[9]

H. Brèzis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert,, Amsterdam: North-Holland Publishing Company, (1973).   Google Scholar

[10]

E. Capelato, K. Schiabel-Silva and R. P. Silva, Perturbation of a nonautonomous problem in $\mathbbR^n$,, \emph{Math. Meth. Appl. Sci.}, 36 (2013), 1625.  doi: 10.1002/mma.2712.  Google Scholar

[11]

T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes,, \emph{Nonlinear Anal.}, 72 (2010), 1967.  doi: 10.1016/j.na.2009.09.037.  Google Scholar

[12]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems,, Applied Mathematical Sciences 182, (2012).  doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[13]

G. Chen and C. Zhong, Uniform attractors for non-autonomous $p-$Laplacian equations,, \emph{Nonlinear Anal.}, 68 (2008), 3349.  doi: 10.1016/j.na.2007.03.025.  Google Scholar

[14]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, \emph{SIAM J. Math.}, 66 (2006), 1383.  doi: 10.1137/050624522.  Google Scholar

[15]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Springer-Verlag, (2011).  doi: 10.1007/978-3-642-18363-8.  Google Scholar

[16]

M. Effendiev, Attractors for Degenerate Parabolic type Equations,, Mathematical Surveys and Monographs, (2013).   Google Scholar

[17]

F. Ettwein and M. Růžička, Existence of local strong solutions for motions of electrorheological fluids in three dimensions,, \emph{Computers and mathematics with applications}, 53 (2007), 595.  doi: 10.1016/j.camwa.2006.02.032.  Google Scholar

[18]

X. L. Fan and Q. H. Zhang, Existence of solutions for $p(x)-$laplacian Dirichlet problems,, \emph{Nonlinear Anal.}, 52 (2003), 1843.  doi: 10.1016/S0362-546X(02)00150-5.  Google Scholar

[19]

X. L. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$,, \emph{J. Math. Anal. Appl.}, 262 (2001), 749.  doi: 10.1006/jmaa.2001.7618.  Google Scholar

[20]

X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, \emph{J. Math. Anal. Appl.}, 263 (2001), 424.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[21]

Z. Guo, Q. Liu, J. Sun and B. Wu, Reaction-diffusion systems with $p(x)-$growth for image denoising,, \emph{Nonlinear Analysis: Real World Applications}, 12 (2011), 2904.  doi: 10.1016/j.nonrwa.2011.04.015.  Google Scholar

[22]

P. Harjulehto, P. Hästö, U. Lê and M. Nuortio, Overview of differential equations with non-standard growth,, \emph{Nonlinear Analysis}, 72 (2010), 4551.  doi: 10.1016/j.na.2010.02.033.  Google Scholar

[23]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, Mathematical Surveys and Monographs, (2011).   Google Scholar

[24]

S. Lian, W. Gao, H. Yuan and C. Cao, Existence of solutions to an initial Dirichlet problem of evolutional $p(x)-$Laplace equations,, \emph{Ann. I. H. Poincar\'e - AN}, 29 (2012), 377.  doi: 10.1016/j.anihpc.2012.01.001.  Google Scholar

[25]

Y. Li and C. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations,, \emph{Appl. Math. Comput.}, 190 (2007), 1020.  doi: 10.1016/j.amc.2006.11.187.  Google Scholar

[26]

W. Niu, Long-time behavior for a nonlinear parabolic problem with variable exponents,, \emph{J. Math. Anal. Appl.}, 393 (2012), 56.  doi: 10.1016/j.jmaa.2012.03.039.  Google Scholar

[27]

K. Rajagopal and M. Růžička, Mathematical modelling of electrorheological materials,, \emph{Contin. Mech. Thermodyn.}, 13 (2001), 59.  doi: 10.1007/s001610100034.  Google Scholar

[28]

M. Růžička, Flow of shear dependent electrorheological fluids,, \emph{C. R. Acad. Sci. Paris Sér. I}, 329 (1999), 393.  doi: 10.1016/S0764-4442(00)88612-7.  Google Scholar

[29]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, in: Lectures Notes in Mathematics, vol. 1748,, Springer-Verlag, (2000).  doi: 10.1007/BFb0104029.  Google Scholar

[30]

J. Simsen, A global attractor for a $p(x)$-Laplacian problem,, \emph{Nonlinear Anal.}, 73 (2010), 3278.  doi: 10.1016/j.na.2010.06.087.  Google Scholar

[31]

J. Simsen and C. B. Gentile, Well-posed $p$-laplacian problems with large diffusion,, \emph{Nonlinear Anal.}, 71 (2009), 4609.  doi: 10.1016/j.na.2009.03.041.  Google Scholar

[32]

J. Simsen and M. S. Simsen, PDE and ODE Limit Problems for $p(x)$-Laplacian Parabolic Equations,, \emph{J. Math. Anal. Appl.}, 383 (2011), 71.  doi: 10.1016/j.jmaa.2011.05.003.  Google Scholar

[33]

J. Simsen, M. S. Simsen and M. R. T. Primo, Continuity of the flows and upper semicontinuity of global attractors for $p_s(x)$-Laplacian parabolic problems,, \emph{J. Math. Anal. Appl.}, 398 (2013), 138.  doi: 10.1016/j.jmaa.2012.08.047.  Google Scholar

[34]

J. Simsen, M. J. D. Nascimento and M. S. Simsen, Existence and upper semicontinuity of pullback attractors for non-autonomous p-Laplacian parabolic problems,, \emph{J. Math. Anal. Appl.}, 413 (2014), 685.  doi: 10.1016/j.jmaa.2013.12.019.  Google Scholar

[35]

L. Songzhe, G. Wenjie, C. Chunling and Y. Hongjun, Study of the solutions to a model porous medium equation with variable exponent of nonlinearity,, \emph{J. Math. Anal. Appl.}, 342 (2008), 27.  doi: 10.1016/j.jmaa.2007.11.046.  Google Scholar

[36]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[37]

B. Wang and R. Jones, Asymptotic behavior of a class of non-autonomous degenerate parabolic equations,, \emph{Nonlinear Anal.}, 72 (2010), 3887.  doi: 10.1016/j.na.2010.01.026.  Google Scholar

[38]

L. Yang, M. Yang and P. E. Kloeden, Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions,, \emph{Discrete Contin. Dyn. Syst. Series B}, 17 (2012), 2635.  doi: 10.3934/dcdsb.2012.17.2635.  Google Scholar

[39]

S. Yotsutani, Evolution equations associated with the subdifferentials,, \emph{J. Math. Soc. Japan}, 31 (1978), 623.  doi: 10.2969/jmsj/03140623.  Google Scholar

show all references

References:
[1]

R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing,, \emph{Computers and Mathematics with Applications}, 56 (2008), 874.  doi: 10.1016/j.camwa.2008.01.017.  Google Scholar

[2]

G. Akagi and K. Matsuura, Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)-$Laplacian,, \emph{Discrete Contin. Dyn. Syst. 2011, Suppl. Vol. I (2011), 22.   Google Scholar

[3]

G. Akagi and K. Matsuura, Nonlinear diffusion equations driven by $p(\cdot)-$Laplacian,, \emph{NoDEA Nonlinear Differential Equations Appl.}, 20 (2013), 37.  doi: 10.1007/s00030-012-0153-6.  Google Scholar

[4]

B. Amaziane, L. Pankratov and A. Piatnitski, Nonlinear flow through double porosity media in variable exponent Sobolev spaces,, \emph{Nonlinear Anal.: Real World Applications}, 10 (2009), 2521.  doi: 10.1016/j.nonrwa.2008.05.008.  Google Scholar

[5]

S. N. Antonstev and S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions,, \emph{Nonlinear Analysis}, 60 (2005), 515.  doi: 10.1016/j.na.2004.09.026.  Google Scholar

[6]

S. N. Antontsev and S. Shmarev, Anisotropic parabolic equations with variable nonlinearity,, \emph{Publications Mathematiques}, 53 (2009), 355.  doi: 10.5565/PUBLMAT-53209-04.  Google Scholar

[7]

S. N. Antontsev and S. Shmarev, Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity,, \emph{J. Mathematical Sciences}, 150 (2008), 2289.  doi: 10.1007/s10958-008-0129-6.  Google Scholar

[8]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Space,, Noordhoff International Publishing, (1976).   Google Scholar

[9]

H. Brèzis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert,, Amsterdam: North-Holland Publishing Company, (1973).   Google Scholar

[10]

E. Capelato, K. Schiabel-Silva and R. P. Silva, Perturbation of a nonautonomous problem in $\mathbbR^n$,, \emph{Math. Meth. Appl. Sci.}, 36 (2013), 1625.  doi: 10.1002/mma.2712.  Google Scholar

[11]

T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes,, \emph{Nonlinear Anal.}, 72 (2010), 1967.  doi: 10.1016/j.na.2009.09.037.  Google Scholar

[12]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems,, Applied Mathematical Sciences 182, (2012).  doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[13]

G. Chen and C. Zhong, Uniform attractors for non-autonomous $p-$Laplacian equations,, \emph{Nonlinear Anal.}, 68 (2008), 3349.  doi: 10.1016/j.na.2007.03.025.  Google Scholar

[14]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, \emph{SIAM J. Math.}, 66 (2006), 1383.  doi: 10.1137/050624522.  Google Scholar

[15]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Springer-Verlag, (2011).  doi: 10.1007/978-3-642-18363-8.  Google Scholar

[16]

M. Effendiev, Attractors for Degenerate Parabolic type Equations,, Mathematical Surveys and Monographs, (2013).   Google Scholar

[17]

F. Ettwein and M. Růžička, Existence of local strong solutions for motions of electrorheological fluids in three dimensions,, \emph{Computers and mathematics with applications}, 53 (2007), 595.  doi: 10.1016/j.camwa.2006.02.032.  Google Scholar

[18]

X. L. Fan and Q. H. Zhang, Existence of solutions for $p(x)-$laplacian Dirichlet problems,, \emph{Nonlinear Anal.}, 52 (2003), 1843.  doi: 10.1016/S0362-546X(02)00150-5.  Google Scholar

[19]

X. L. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$,, \emph{J. Math. Anal. Appl.}, 262 (2001), 749.  doi: 10.1006/jmaa.2001.7618.  Google Scholar

[20]

X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, \emph{J. Math. Anal. Appl.}, 263 (2001), 424.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[21]

Z. Guo, Q. Liu, J. Sun and B. Wu, Reaction-diffusion systems with $p(x)-$growth for image denoising,, \emph{Nonlinear Analysis: Real World Applications}, 12 (2011), 2904.  doi: 10.1016/j.nonrwa.2011.04.015.  Google Scholar

[22]

P. Harjulehto, P. Hästö, U. Lê and M. Nuortio, Overview of differential equations with non-standard growth,, \emph{Nonlinear Analysis}, 72 (2010), 4551.  doi: 10.1016/j.na.2010.02.033.  Google Scholar

[23]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, Mathematical Surveys and Monographs, (2011).   Google Scholar

[24]

S. Lian, W. Gao, H. Yuan and C. Cao, Existence of solutions to an initial Dirichlet problem of evolutional $p(x)-$Laplace equations,, \emph{Ann. I. H. Poincar\'e - AN}, 29 (2012), 377.  doi: 10.1016/j.anihpc.2012.01.001.  Google Scholar

[25]

Y. Li and C. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations,, \emph{Appl. Math. Comput.}, 190 (2007), 1020.  doi: 10.1016/j.amc.2006.11.187.  Google Scholar

[26]

W. Niu, Long-time behavior for a nonlinear parabolic problem with variable exponents,, \emph{J. Math. Anal. Appl.}, 393 (2012), 56.  doi: 10.1016/j.jmaa.2012.03.039.  Google Scholar

[27]

K. Rajagopal and M. Růžička, Mathematical modelling of electrorheological materials,, \emph{Contin. Mech. Thermodyn.}, 13 (2001), 59.  doi: 10.1007/s001610100034.  Google Scholar

[28]

M. Růžička, Flow of shear dependent electrorheological fluids,, \emph{C. R. Acad. Sci. Paris Sér. I}, 329 (1999), 393.  doi: 10.1016/S0764-4442(00)88612-7.  Google Scholar

[29]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, in: Lectures Notes in Mathematics, vol. 1748,, Springer-Verlag, (2000).  doi: 10.1007/BFb0104029.  Google Scholar

[30]

J. Simsen, A global attractor for a $p(x)$-Laplacian problem,, \emph{Nonlinear Anal.}, 73 (2010), 3278.  doi: 10.1016/j.na.2010.06.087.  Google Scholar

[31]

J. Simsen and C. B. Gentile, Well-posed $p$-laplacian problems with large diffusion,, \emph{Nonlinear Anal.}, 71 (2009), 4609.  doi: 10.1016/j.na.2009.03.041.  Google Scholar

[32]

J. Simsen and M. S. Simsen, PDE and ODE Limit Problems for $p(x)$-Laplacian Parabolic Equations,, \emph{J. Math. Anal. Appl.}, 383 (2011), 71.  doi: 10.1016/j.jmaa.2011.05.003.  Google Scholar

[33]

J. Simsen, M. S. Simsen and M. R. T. Primo, Continuity of the flows and upper semicontinuity of global attractors for $p_s(x)$-Laplacian parabolic problems,, \emph{J. Math. Anal. Appl.}, 398 (2013), 138.  doi: 10.1016/j.jmaa.2012.08.047.  Google Scholar

[34]

J. Simsen, M. J. D. Nascimento and M. S. Simsen, Existence and upper semicontinuity of pullback attractors for non-autonomous p-Laplacian parabolic problems,, \emph{J. Math. Anal. Appl.}, 413 (2014), 685.  doi: 10.1016/j.jmaa.2013.12.019.  Google Scholar

[35]

L. Songzhe, G. Wenjie, C. Chunling and Y. Hongjun, Study of the solutions to a model porous medium equation with variable exponent of nonlinearity,, \emph{J. Math. Anal. Appl.}, 342 (2008), 27.  doi: 10.1016/j.jmaa.2007.11.046.  Google Scholar

[36]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[37]

B. Wang and R. Jones, Asymptotic behavior of a class of non-autonomous degenerate parabolic equations,, \emph{Nonlinear Anal.}, 72 (2010), 3887.  doi: 10.1016/j.na.2010.01.026.  Google Scholar

[38]

L. Yang, M. Yang and P. E. Kloeden, Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions,, \emph{Discrete Contin. Dyn. Syst. Series B}, 17 (2012), 2635.  doi: 10.3934/dcdsb.2012.17.2635.  Google Scholar

[39]

S. Yotsutani, Evolution equations associated with the subdifferentials,, \emph{J. Math. Soc. Japan}, 31 (1978), 623.  doi: 10.2969/jmsj/03140623.  Google Scholar

[1]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

[2]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2221-2245. doi: 10.3934/cpaa.2016035

[3]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[4]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5959-5979. doi: 10.3934/dcdsb.2019115

[5]

Alexandre Nolasco de Carvalho, Marcelo J. D. Nascimento. Singularly non-autonomous semilinear parabolic problems with critical exponents. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 449-471. doi: 10.3934/dcdss.2009.2.449

[6]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[7]

Ting Li. Pullback attractors for asymptotically upper semicompact non-autonomous multi-valued semiflows. Communications on Pure & Applied Analysis, 2007, 6 (1) : 279-285. doi: 10.3934/cpaa.2007.6.279

[8]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[9]

Yonghai Wang. On the upper semicontinuity of pullback attractors with applications to plate equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1653-1673. doi: 10.3934/cpaa.2010.9.1653

[10]

Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214

[11]

Shengfan Zhou, Caidi Zhao, Yejuan Wang. Finite dimensionality and upper semicontinuity of compact kernel sections of non-autonomous lattice systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1259-1277. doi: 10.3934/dcds.2008.21.1259

[12]

Yonghai Wang, Chengkui Zhong. Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3189-3209. doi: 10.3934/dcds.2013.33.3189

[13]

Antonio Carlos Fernandes, Marcela Carvalho Gonçcalves, Jacson Simsen. Non-autonomous reaction-diffusion equations with variable exponents and large diffusion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1485-1510. doi: 10.3934/dcdsb.2018217

[14]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111

[15]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203

[16]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[17]

Bo You, Chengkui Zhong, Fang Li. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1213-1226. doi: 10.3934/dcdsb.2014.19.1213

[18]

Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801

[19]

Suping Wang, Qiaozhen Ma. Existence of pullback attractors for the non-autonomous suspension bridge equation with time delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019221

[20]

Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 55-80. doi: 10.3934/dcdsb.2019172

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]