• Previous Article
    S-shaped bifurcation curves for a combustion problem with general arrhenius reaction-rate laws
  • CPAA Home
  • This Issue
  • Next Article
    Pullback attractors for non-autonomous evolution equations with spatially variable exponents
November  2014, 13(6): 2559-2587. doi: 10.3934/cpaa.2014.13.2559

Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

2. 

Department of Mathematics, Shanghai Jiaotong University, Shang hai 200240

3. 

LMAM, School of Mathematical Sciences, Peking University, Bejing 100871

4. 

Department of Mathematics Education, Sangmyung University, Seoul 110--743, South Korea

Received  April 2014 Revised  May 2014 Published  July 2014

In this paper we consider the global gradient estimates for weak solutions of $p(x)$-Laplacian type equation with small BMO coefficients in a $\delta$-Reifenberg flat domain. The modified Vitali covering lemma, good $\lambda$-inequalities, the maximal function technique and the appropriate localization method are the main analytical tools. The global Caldéron--Zygmund theory for such equations is obtained. Moreover, we generalize the regularity estimates in the Lebesgue spaces to the Orlicz spaces.
Citation: Chao Zhang, Lihe Wang, Shulin Zhou, Yun-Ho Kim. Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2559-2587. doi: 10.3934/cpaa.2014.13.2559
References:
[1]

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids,, \emph{Arch. Ration. Mech. Anal.}, 164 (2002), 213.  doi: 10.1007/s00205-002-0208-7.  Google Scholar

[2]

E. Acerbi and G. Mingione, Gradient estimates for the $p(x)$-Laplacean system,, \emph{J. reine angew. Math.}, 584 (2005), 117.  doi: 10.1515/crll.2005.2005.584.117.  Google Scholar

[3]

R. A. Adams and J. J. F. Fournier, Sobolev spaces,, (2nd edition), (2003).   Google Scholar

[4]

K. Astala, T. Iwaniec, P. Koskela and G. Martin, Mappings of BMO-bounded distortion,, \emph{Math. Ann.}, 317 (2000), 703.  doi: 10.1007/PL00004420.  Google Scholar

[5]

V. Bögelein and M. Parviainen, Self-improving property of nonlinear higher order parabolic systems near the boundary,, \emph{NoDEA Nonlinear Differential Equations Appl.}, 17 (2010), 21.  doi: 10.1007/s00030-009-0038-5.  Google Scholar

[6]

S. Byun and S. Ryu, Global weighted estimates for the gradient of solutions to nonlinear elliptic equations,, \emph{Ann. Inst. H. Poincaré Anal. Non Linéaire}, 30 (2013), 291.  doi: 10.1016/j.anihpc.2012.08.001.  Google Scholar

[7]

S. Byun and L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains,, \emph{Comm. Pure Appl. Math.}, 57 (2004), 1283.  doi: 10.1002/cpa.20037.  Google Scholar

[8]

S. Byun, L. Wang and S. Zhou, Nonlinear elliptic equations with small BMO coefficients in Reifenberg domains,, \emph{J. Funct. Anal.}, 250 (2007), 167.  doi: 10.1016/j.jfa.2007.04.021.  Google Scholar

[9]

S. Byun, F. Yao and S. Zhou, Gradient estimates in Orlicz space for nonlinear elliptic equations,, \emph{J. Funct. Anal.}, 255 (2008), 1851.  doi: 10.1016/j.jfa.2008.09.007.  Google Scholar

[10]

L. A. Caffarelli and I. Peral, On $W^{1,p}$ estimates for elliptic equations in divergence form,, \emph{Comm. Pure Appl. Math.}, 51 (1998), 1.  doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.3.CO;2-N.  Google Scholar

[11]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, \emph{SIAM J. Appl. Math.}, 66 (2006), 1383.  doi: 10.1137/050624522.  Google Scholar

[12]

E. DiBenedetto and J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems,, \emph{Amer. J. Math.}, 115 (1993), 1107.  doi: 10.2307/2375066.  Google Scholar

[13]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Lecture Notes in Mathematics, (2017).  doi: 10.1007/978-3-642-18363-8.  Google Scholar

[14]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, \emph{J. Math. Anal. Appl.}, 263 (2001), 424.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[15]

F. Giannetti and A. Passarelli di Napoli, Regularity results for a new class of functionals with non-standard growth conditions,, \emph{J. Differential Equations}, 254 (2013), 1280.  doi: 10.1016/j.jde.2012.10.011.  Google Scholar

[16]

P. Harjulehto, Variable exponent Sobolev spaces with zero boundary values,, \emph{Math. Bohem.}, 132 (2007), 125.   Google Scholar

[17]

T. Iwaniec, Projections onto gradient fields and $L^p$-estimates for degenerated elliptic operators,, \emph{Studia Math.}, 75 (1983), 293.   Google Scholar

[18]

T. Iwaniec, $p$-harmonic tensors and quasiregular mappings,, \emph{Ann. Math.}, 136 (1992), 589.  doi: 10.2307/2946602.  Google Scholar

[19]

T. Iwaniec and A. Verde, On the operator $\mathcalL(f)=f\log|f|$,, \emph{J. Funct. Anal.}, 169 (1999), 391.  doi: 10.1006/jfan.1999.3443.  Google Scholar

[20]

J. Kinnumen and S. Zhou, A local estimate for nonlinear equations with discontinuous coefficients,, \emph{Comm. Partial Differential Equations}, 24 (1999), 2043.  doi: 10.1080/03605309908821494.  Google Scholar

[21]

J. Kinnunen and S. Zhou, A boundary estimate for nonlinear equations with discontinuous coefficients,, \emph{Differential Integral Equations}, 14 (2001), 475.   Google Scholar

[22]

V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces,, World Scientific, (1991).  doi: 10.1142/9789814360302.  Google Scholar

[23]

T. Kilpeläinen and P. Koskela, Global integrability of the gradients of solutions to partial differential equations,, \emph{Nonlinear Anal.}, 23 (1994), 899.  doi: 10.1016/0362-546X(94)90127-9.  Google Scholar

[24]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$,, \emph{Czechoslovak Math. J.}, 41 (1991), 592.   Google Scholar

[25]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,, \emph{Nonlinear Anal.}, 12 (1988), 1203.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[26]

T. Mengesha and N. C. Phuc, Global estimates for quasilinear elliptic equations on Reifenberg flat domains,, \emph{Arch. Ration. Mech. Anal.}, 203 (2012), 189.  doi: 10.1007/s00205-011-0446-7.  Google Scholar

[27]

K. Rajagopal and M. Růžička, Mathematical modeling of electro-rheological fluids,, \emph{Contin. Mech. Thermodyn.}, 13 (2001), 59.   Google Scholar

[28]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory,, in: Lecture Notes in Mathematics, (1748).  doi: 10.1007/BFb0104029.  Google Scholar

[29]

J. Musielak, Orlicz Spaces and Modular Spaces,, Springer-Verlag, (1983).   Google Scholar

[30]

M. Rao and Z. Ren, Applications of Orlicz Spaces,, Marcel Dekker Inc., (2002).  doi: 10.1201/9780203910863.  Google Scholar

[31]

E. M. Stein, Harmonic Analysis,, Princeton University Press, (1993).   Google Scholar

[32]

L. Wang, F. Yao, S. Zhou and H. Jia, Optimal regularity for the poisson equation,, \emph{Proc. Amer. Math. Soc.}, 137 (2009), 2037.  doi: 10.1090/S0002-9939-09-09805-0.  Google Scholar

[33]

V. V. Zhikov, On some variational problems,, \emph{Russ. J. Math. Phys.}, 5 (1997), 105.   Google Scholar

show all references

References:
[1]

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids,, \emph{Arch. Ration. Mech. Anal.}, 164 (2002), 213.  doi: 10.1007/s00205-002-0208-7.  Google Scholar

[2]

E. Acerbi and G. Mingione, Gradient estimates for the $p(x)$-Laplacean system,, \emph{J. reine angew. Math.}, 584 (2005), 117.  doi: 10.1515/crll.2005.2005.584.117.  Google Scholar

[3]

R. A. Adams and J. J. F. Fournier, Sobolev spaces,, (2nd edition), (2003).   Google Scholar

[4]

K. Astala, T. Iwaniec, P. Koskela and G. Martin, Mappings of BMO-bounded distortion,, \emph{Math. Ann.}, 317 (2000), 703.  doi: 10.1007/PL00004420.  Google Scholar

[5]

V. Bögelein and M. Parviainen, Self-improving property of nonlinear higher order parabolic systems near the boundary,, \emph{NoDEA Nonlinear Differential Equations Appl.}, 17 (2010), 21.  doi: 10.1007/s00030-009-0038-5.  Google Scholar

[6]

S. Byun and S. Ryu, Global weighted estimates for the gradient of solutions to nonlinear elliptic equations,, \emph{Ann. Inst. H. Poincaré Anal. Non Linéaire}, 30 (2013), 291.  doi: 10.1016/j.anihpc.2012.08.001.  Google Scholar

[7]

S. Byun and L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains,, \emph{Comm. Pure Appl. Math.}, 57 (2004), 1283.  doi: 10.1002/cpa.20037.  Google Scholar

[8]

S. Byun, L. Wang and S. Zhou, Nonlinear elliptic equations with small BMO coefficients in Reifenberg domains,, \emph{J. Funct. Anal.}, 250 (2007), 167.  doi: 10.1016/j.jfa.2007.04.021.  Google Scholar

[9]

S. Byun, F. Yao and S. Zhou, Gradient estimates in Orlicz space for nonlinear elliptic equations,, \emph{J. Funct. Anal.}, 255 (2008), 1851.  doi: 10.1016/j.jfa.2008.09.007.  Google Scholar

[10]

L. A. Caffarelli and I. Peral, On $W^{1,p}$ estimates for elliptic equations in divergence form,, \emph{Comm. Pure Appl. Math.}, 51 (1998), 1.  doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.3.CO;2-N.  Google Scholar

[11]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, \emph{SIAM J. Appl. Math.}, 66 (2006), 1383.  doi: 10.1137/050624522.  Google Scholar

[12]

E. DiBenedetto and J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems,, \emph{Amer. J. Math.}, 115 (1993), 1107.  doi: 10.2307/2375066.  Google Scholar

[13]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Lecture Notes in Mathematics, (2017).  doi: 10.1007/978-3-642-18363-8.  Google Scholar

[14]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, \emph{J. Math. Anal. Appl.}, 263 (2001), 424.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[15]

F. Giannetti and A. Passarelli di Napoli, Regularity results for a new class of functionals with non-standard growth conditions,, \emph{J. Differential Equations}, 254 (2013), 1280.  doi: 10.1016/j.jde.2012.10.011.  Google Scholar

[16]

P. Harjulehto, Variable exponent Sobolev spaces with zero boundary values,, \emph{Math. Bohem.}, 132 (2007), 125.   Google Scholar

[17]

T. Iwaniec, Projections onto gradient fields and $L^p$-estimates for degenerated elliptic operators,, \emph{Studia Math.}, 75 (1983), 293.   Google Scholar

[18]

T. Iwaniec, $p$-harmonic tensors and quasiregular mappings,, \emph{Ann. Math.}, 136 (1992), 589.  doi: 10.2307/2946602.  Google Scholar

[19]

T. Iwaniec and A. Verde, On the operator $\mathcalL(f)=f\log|f|$,, \emph{J. Funct. Anal.}, 169 (1999), 391.  doi: 10.1006/jfan.1999.3443.  Google Scholar

[20]

J. Kinnumen and S. Zhou, A local estimate for nonlinear equations with discontinuous coefficients,, \emph{Comm. Partial Differential Equations}, 24 (1999), 2043.  doi: 10.1080/03605309908821494.  Google Scholar

[21]

J. Kinnunen and S. Zhou, A boundary estimate for nonlinear equations with discontinuous coefficients,, \emph{Differential Integral Equations}, 14 (2001), 475.   Google Scholar

[22]

V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces,, World Scientific, (1991).  doi: 10.1142/9789814360302.  Google Scholar

[23]

T. Kilpeläinen and P. Koskela, Global integrability of the gradients of solutions to partial differential equations,, \emph{Nonlinear Anal.}, 23 (1994), 899.  doi: 10.1016/0362-546X(94)90127-9.  Google Scholar

[24]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$,, \emph{Czechoslovak Math. J.}, 41 (1991), 592.   Google Scholar

[25]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,, \emph{Nonlinear Anal.}, 12 (1988), 1203.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[26]

T. Mengesha and N. C. Phuc, Global estimates for quasilinear elliptic equations on Reifenberg flat domains,, \emph{Arch. Ration. Mech. Anal.}, 203 (2012), 189.  doi: 10.1007/s00205-011-0446-7.  Google Scholar

[27]

K. Rajagopal and M. Růžička, Mathematical modeling of electro-rheological fluids,, \emph{Contin. Mech. Thermodyn.}, 13 (2001), 59.   Google Scholar

[28]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory,, in: Lecture Notes in Mathematics, (1748).  doi: 10.1007/BFb0104029.  Google Scholar

[29]

J. Musielak, Orlicz Spaces and Modular Spaces,, Springer-Verlag, (1983).   Google Scholar

[30]

M. Rao and Z. Ren, Applications of Orlicz Spaces,, Marcel Dekker Inc., (2002).  doi: 10.1201/9780203910863.  Google Scholar

[31]

E. M. Stein, Harmonic Analysis,, Princeton University Press, (1993).   Google Scholar

[32]

L. Wang, F. Yao, S. Zhou and H. Jia, Optimal regularity for the poisson equation,, \emph{Proc. Amer. Math. Soc.}, 137 (2009), 2037.  doi: 10.1090/S0002-9939-09-09805-0.  Google Scholar

[33]

V. V. Zhikov, On some variational problems,, \emph{Russ. J. Math. Phys.}, 5 (1997), 105.   Google Scholar

[1]

Dung Le. On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3245-3265. doi: 10.3934/dcdsb.2014.19.3245

[2]

Sun-Sig Byun, Lihe Wang. $W^{1,p}$ regularity for the conormal derivative problem with parabolic BMO nonlinearity in reifenberg domains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 617-637. doi: 10.3934/dcds.2008.20.617

[3]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[4]

Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011

[5]

Ángel Arroyo, Joonas Heino, Mikko Parviainen. Tug-of-war games with varying probabilities and the normalized p(x)-laplacian. Communications on Pure & Applied Analysis, 2017, 16 (3) : 915-944. doi: 10.3934/cpaa.2017044

[6]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[7]

Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019

[8]

Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22

[9]

Andrea Cianchi, Vladimir Maz'ya. Global gradient estimates in elliptic problems under minimal data and domain regularity. Communications on Pure & Applied Analysis, 2015, 14 (1) : 285-311. doi: 10.3934/cpaa.2015.14.285

[10]

Shuang Liang, Shenzhou Zheng. Variable lorentz estimate for stationary stokes system with partially BMO coefficients. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2879-2903. doi: 10.3934/cpaa.2019129

[11]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Existence of radial solutions for the $p$-Laplacian elliptic equations with weights. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 447-479. doi: 10.3934/dcds.2006.15.447

[12]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191

[13]

Chenchen Mou. Nonlinear elliptic systems involving the fractional Laplacian in the unit ball and on a half space. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2335-2362. doi: 10.3934/cpaa.2015.14.2335

[14]

Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62

[15]

Liangjun Weng. The interior gradient estimate for some nonlinear curvature equations. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1601-1612. doi: 10.3934/cpaa.2019076

[16]

Junjie Zhang, Shenzhou Zheng. Weighted lorentz estimates for nondivergence linear elliptic equations with partially BMO coefficients. Communications on Pure & Applied Analysis, 2017, 16 (3) : 899-914. doi: 10.3934/cpaa.2017043

[17]

Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252

[18]

Pavel Jirásek. On Compactness Conditions for the $p$-Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 715-726. doi: 10.3934/cpaa.2016.15.715

[19]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[20]

Sun-Sig Byun, Yumi Cho. Lorentz-Morrey regularity for nonlinear elliptic problems with irregular obstacles over Reifenberg flat domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4791-4804. doi: 10.3934/dcds.2015.35.4791

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]