• Previous Article
    S-shaped bifurcation curves for a combustion problem with general arrhenius reaction-rate laws
  • CPAA Home
  • This Issue
  • Next Article
    Pullback attractors for non-autonomous evolution equations with spatially variable exponents
November  2014, 13(6): 2559-2587. doi: 10.3934/cpaa.2014.13.2559

Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

2. 

Department of Mathematics, Shanghai Jiaotong University, Shang hai 200240

3. 

LMAM, School of Mathematical Sciences, Peking University, Bejing 100871

4. 

Department of Mathematics Education, Sangmyung University, Seoul 110--743, South Korea

Received  April 2014 Revised  May 2014 Published  July 2014

In this paper we consider the global gradient estimates for weak solutions of $p(x)$-Laplacian type equation with small BMO coefficients in a $\delta$-Reifenberg flat domain. The modified Vitali covering lemma, good $\lambda$-inequalities, the maximal function technique and the appropriate localization method are the main analytical tools. The global Caldéron--Zygmund theory for such equations is obtained. Moreover, we generalize the regularity estimates in the Lebesgue spaces to the Orlicz spaces.
Citation: Chao Zhang, Lihe Wang, Shulin Zhou, Yun-Ho Kim. Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2559-2587. doi: 10.3934/cpaa.2014.13.2559
References:
[1]

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids,, \emph{Arch. Ration. Mech. Anal.}, 164 (2002), 213.  doi: 10.1007/s00205-002-0208-7.  Google Scholar

[2]

E. Acerbi and G. Mingione, Gradient estimates for the $p(x)$-Laplacean system,, \emph{J. reine angew. Math.}, 584 (2005), 117.  doi: 10.1515/crll.2005.2005.584.117.  Google Scholar

[3]

R. A. Adams and J. J. F. Fournier, Sobolev spaces,, (2nd edition), (2003).   Google Scholar

[4]

K. Astala, T. Iwaniec, P. Koskela and G. Martin, Mappings of BMO-bounded distortion,, \emph{Math. Ann.}, 317 (2000), 703.  doi: 10.1007/PL00004420.  Google Scholar

[5]

V. Bögelein and M. Parviainen, Self-improving property of nonlinear higher order parabolic systems near the boundary,, \emph{NoDEA Nonlinear Differential Equations Appl.}, 17 (2010), 21.  doi: 10.1007/s00030-009-0038-5.  Google Scholar

[6]

S. Byun and S. Ryu, Global weighted estimates for the gradient of solutions to nonlinear elliptic equations,, \emph{Ann. Inst. H. Poincaré Anal. Non Linéaire}, 30 (2013), 291.  doi: 10.1016/j.anihpc.2012.08.001.  Google Scholar

[7]

S. Byun and L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains,, \emph{Comm. Pure Appl. Math.}, 57 (2004), 1283.  doi: 10.1002/cpa.20037.  Google Scholar

[8]

S. Byun, L. Wang and S. Zhou, Nonlinear elliptic equations with small BMO coefficients in Reifenberg domains,, \emph{J. Funct. Anal.}, 250 (2007), 167.  doi: 10.1016/j.jfa.2007.04.021.  Google Scholar

[9]

S. Byun, F. Yao and S. Zhou, Gradient estimates in Orlicz space for nonlinear elliptic equations,, \emph{J. Funct. Anal.}, 255 (2008), 1851.  doi: 10.1016/j.jfa.2008.09.007.  Google Scholar

[10]

L. A. Caffarelli and I. Peral, On $W^{1,p}$ estimates for elliptic equations in divergence form,, \emph{Comm. Pure Appl. Math.}, 51 (1998), 1.  doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.3.CO;2-N.  Google Scholar

[11]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, \emph{SIAM J. Appl. Math.}, 66 (2006), 1383.  doi: 10.1137/050624522.  Google Scholar

[12]

E. DiBenedetto and J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems,, \emph{Amer. J. Math.}, 115 (1993), 1107.  doi: 10.2307/2375066.  Google Scholar

[13]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Lecture Notes in Mathematics, (2017).  doi: 10.1007/978-3-642-18363-8.  Google Scholar

[14]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, \emph{J. Math. Anal. Appl.}, 263 (2001), 424.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[15]

F. Giannetti and A. Passarelli di Napoli, Regularity results for a new class of functionals with non-standard growth conditions,, \emph{J. Differential Equations}, 254 (2013), 1280.  doi: 10.1016/j.jde.2012.10.011.  Google Scholar

[16]

P. Harjulehto, Variable exponent Sobolev spaces with zero boundary values,, \emph{Math. Bohem.}, 132 (2007), 125.   Google Scholar

[17]

T. Iwaniec, Projections onto gradient fields and $L^p$-estimates for degenerated elliptic operators,, \emph{Studia Math.}, 75 (1983), 293.   Google Scholar

[18]

T. Iwaniec, $p$-harmonic tensors and quasiregular mappings,, \emph{Ann. Math.}, 136 (1992), 589.  doi: 10.2307/2946602.  Google Scholar

[19]

T. Iwaniec and A. Verde, On the operator $\mathcalL(f)=f\log|f|$,, \emph{J. Funct. Anal.}, 169 (1999), 391.  doi: 10.1006/jfan.1999.3443.  Google Scholar

[20]

J. Kinnumen and S. Zhou, A local estimate for nonlinear equations with discontinuous coefficients,, \emph{Comm. Partial Differential Equations}, 24 (1999), 2043.  doi: 10.1080/03605309908821494.  Google Scholar

[21]

J. Kinnunen and S. Zhou, A boundary estimate for nonlinear equations with discontinuous coefficients,, \emph{Differential Integral Equations}, 14 (2001), 475.   Google Scholar

[22]

V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces,, World Scientific, (1991).  doi: 10.1142/9789814360302.  Google Scholar

[23]

T. Kilpeläinen and P. Koskela, Global integrability of the gradients of solutions to partial differential equations,, \emph{Nonlinear Anal.}, 23 (1994), 899.  doi: 10.1016/0362-546X(94)90127-9.  Google Scholar

[24]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$,, \emph{Czechoslovak Math. J.}, 41 (1991), 592.   Google Scholar

[25]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,, \emph{Nonlinear Anal.}, 12 (1988), 1203.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[26]

T. Mengesha and N. C. Phuc, Global estimates for quasilinear elliptic equations on Reifenberg flat domains,, \emph{Arch. Ration. Mech. Anal.}, 203 (2012), 189.  doi: 10.1007/s00205-011-0446-7.  Google Scholar

[27]

K. Rajagopal and M. Růžička, Mathematical modeling of electro-rheological fluids,, \emph{Contin. Mech. Thermodyn.}, 13 (2001), 59.   Google Scholar

[28]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory,, in: Lecture Notes in Mathematics, (1748).  doi: 10.1007/BFb0104029.  Google Scholar

[29]

J. Musielak, Orlicz Spaces and Modular Spaces,, Springer-Verlag, (1983).   Google Scholar

[30]

M. Rao and Z. Ren, Applications of Orlicz Spaces,, Marcel Dekker Inc., (2002).  doi: 10.1201/9780203910863.  Google Scholar

[31]

E. M. Stein, Harmonic Analysis,, Princeton University Press, (1993).   Google Scholar

[32]

L. Wang, F. Yao, S. Zhou and H. Jia, Optimal regularity for the poisson equation,, \emph{Proc. Amer. Math. Soc.}, 137 (2009), 2037.  doi: 10.1090/S0002-9939-09-09805-0.  Google Scholar

[33]

V. V. Zhikov, On some variational problems,, \emph{Russ. J. Math. Phys.}, 5 (1997), 105.   Google Scholar

show all references

References:
[1]

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids,, \emph{Arch. Ration. Mech. Anal.}, 164 (2002), 213.  doi: 10.1007/s00205-002-0208-7.  Google Scholar

[2]

E. Acerbi and G. Mingione, Gradient estimates for the $p(x)$-Laplacean system,, \emph{J. reine angew. Math.}, 584 (2005), 117.  doi: 10.1515/crll.2005.2005.584.117.  Google Scholar

[3]

R. A. Adams and J. J. F. Fournier, Sobolev spaces,, (2nd edition), (2003).   Google Scholar

[4]

K. Astala, T. Iwaniec, P. Koskela and G. Martin, Mappings of BMO-bounded distortion,, \emph{Math. Ann.}, 317 (2000), 703.  doi: 10.1007/PL00004420.  Google Scholar

[5]

V. Bögelein and M. Parviainen, Self-improving property of nonlinear higher order parabolic systems near the boundary,, \emph{NoDEA Nonlinear Differential Equations Appl.}, 17 (2010), 21.  doi: 10.1007/s00030-009-0038-5.  Google Scholar

[6]

S. Byun and S. Ryu, Global weighted estimates for the gradient of solutions to nonlinear elliptic equations,, \emph{Ann. Inst. H. Poincaré Anal. Non Linéaire}, 30 (2013), 291.  doi: 10.1016/j.anihpc.2012.08.001.  Google Scholar

[7]

S. Byun and L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains,, \emph{Comm. Pure Appl. Math.}, 57 (2004), 1283.  doi: 10.1002/cpa.20037.  Google Scholar

[8]

S. Byun, L. Wang and S. Zhou, Nonlinear elliptic equations with small BMO coefficients in Reifenberg domains,, \emph{J. Funct. Anal.}, 250 (2007), 167.  doi: 10.1016/j.jfa.2007.04.021.  Google Scholar

[9]

S. Byun, F. Yao and S. Zhou, Gradient estimates in Orlicz space for nonlinear elliptic equations,, \emph{J. Funct. Anal.}, 255 (2008), 1851.  doi: 10.1016/j.jfa.2008.09.007.  Google Scholar

[10]

L. A. Caffarelli and I. Peral, On $W^{1,p}$ estimates for elliptic equations in divergence form,, \emph{Comm. Pure Appl. Math.}, 51 (1998), 1.  doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.3.CO;2-N.  Google Scholar

[11]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, \emph{SIAM J. Appl. Math.}, 66 (2006), 1383.  doi: 10.1137/050624522.  Google Scholar

[12]

E. DiBenedetto and J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems,, \emph{Amer. J. Math.}, 115 (1993), 1107.  doi: 10.2307/2375066.  Google Scholar

[13]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Lecture Notes in Mathematics, (2017).  doi: 10.1007/978-3-642-18363-8.  Google Scholar

[14]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, \emph{J. Math. Anal. Appl.}, 263 (2001), 424.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[15]

F. Giannetti and A. Passarelli di Napoli, Regularity results for a new class of functionals with non-standard growth conditions,, \emph{J. Differential Equations}, 254 (2013), 1280.  doi: 10.1016/j.jde.2012.10.011.  Google Scholar

[16]

P. Harjulehto, Variable exponent Sobolev spaces with zero boundary values,, \emph{Math. Bohem.}, 132 (2007), 125.   Google Scholar

[17]

T. Iwaniec, Projections onto gradient fields and $L^p$-estimates for degenerated elliptic operators,, \emph{Studia Math.}, 75 (1983), 293.   Google Scholar

[18]

T. Iwaniec, $p$-harmonic tensors and quasiregular mappings,, \emph{Ann. Math.}, 136 (1992), 589.  doi: 10.2307/2946602.  Google Scholar

[19]

T. Iwaniec and A. Verde, On the operator $\mathcalL(f)=f\log|f|$,, \emph{J. Funct. Anal.}, 169 (1999), 391.  doi: 10.1006/jfan.1999.3443.  Google Scholar

[20]

J. Kinnumen and S. Zhou, A local estimate for nonlinear equations with discontinuous coefficients,, \emph{Comm. Partial Differential Equations}, 24 (1999), 2043.  doi: 10.1080/03605309908821494.  Google Scholar

[21]

J. Kinnunen and S. Zhou, A boundary estimate for nonlinear equations with discontinuous coefficients,, \emph{Differential Integral Equations}, 14 (2001), 475.   Google Scholar

[22]

V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces,, World Scientific, (1991).  doi: 10.1142/9789814360302.  Google Scholar

[23]

T. Kilpeläinen and P. Koskela, Global integrability of the gradients of solutions to partial differential equations,, \emph{Nonlinear Anal.}, 23 (1994), 899.  doi: 10.1016/0362-546X(94)90127-9.  Google Scholar

[24]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$,, \emph{Czechoslovak Math. J.}, 41 (1991), 592.   Google Scholar

[25]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,, \emph{Nonlinear Anal.}, 12 (1988), 1203.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[26]

T. Mengesha and N. C. Phuc, Global estimates for quasilinear elliptic equations on Reifenberg flat domains,, \emph{Arch. Ration. Mech. Anal.}, 203 (2012), 189.  doi: 10.1007/s00205-011-0446-7.  Google Scholar

[27]

K. Rajagopal and M. Růžička, Mathematical modeling of electro-rheological fluids,, \emph{Contin. Mech. Thermodyn.}, 13 (2001), 59.   Google Scholar

[28]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory,, in: Lecture Notes in Mathematics, (1748).  doi: 10.1007/BFb0104029.  Google Scholar

[29]

J. Musielak, Orlicz Spaces and Modular Spaces,, Springer-Verlag, (1983).   Google Scholar

[30]

M. Rao and Z. Ren, Applications of Orlicz Spaces,, Marcel Dekker Inc., (2002).  doi: 10.1201/9780203910863.  Google Scholar

[31]

E. M. Stein, Harmonic Analysis,, Princeton University Press, (1993).   Google Scholar

[32]

L. Wang, F. Yao, S. Zhou and H. Jia, Optimal regularity for the poisson equation,, \emph{Proc. Amer. Math. Soc.}, 137 (2009), 2037.  doi: 10.1090/S0002-9939-09-09805-0.  Google Scholar

[33]

V. V. Zhikov, On some variational problems,, \emph{Russ. J. Math. Phys.}, 5 (1997), 105.   Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[4]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[5]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[6]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[7]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[8]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[9]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[10]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[11]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[12]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[15]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[16]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[17]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (155)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]