Advanced Search
Article Contents
Article Contents

S-shaped bifurcation curves for a combustion problem with general arrhenius reaction-rate laws

Abstract Related Papers Cited by
  • We study the bifurcation curve and exact multiplicity of positive solutions of the combustion problem with general Arrhenius reaction-rate laws \begin{eqnarray} u^{\prime \prime }(x)+\lambda (1+\epsilon u)^{m}e^{\frac{u}{1+\epsilon u}}=0, -1 < x < 1, \\ u(-1)=u(1)=0, \end{eqnarray} where the bifurcation parameters $\lambda, \epsilon >0$ and $-\infty < m <1$. We prove that, for $(-4.103\approx)$ $\tilde{m}\leq m < 1$ for some constant $\tilde{m}$, the bifurcation curve is S-shaped on the $(\lambda, \|u\|_{\infty })$-plane if $0<\epsilon \leq \frac{6}{7}\epsilon _{\text{tr}}^{\text{Sem}}(m)$, where \begin{eqnarray} \epsilon _{\text{tr}}^{\text{Sem}}(m)=\left\{ \begin{array}{l} (\frac{1-\sqrt{1-m}}{m})^{2}\ \text{ for }-\infty < m < 1, m \neq 0, \\ \frac{1}{4}\ \text{for}\ m=0, \end{array}\right. \end{eqnarray} is the Semenov transitional value for general Arrhenius kinetics. In addition, for $-\infty < m < 1$, the bifurcation curve is S-like shaped if $0<\epsilon \leq \frac{8}{9} \epsilon _{\text{tr}}^{\text{Sem}}(m).$ Our results improve and extend those in Wang (Proc. Roy. Soc. London Sect. A, 454 (1998), 1031--1048.)
    Mathematics Subject Classification: 34B18, 74G35.


    \begin{equation} \\ \end{equation}
  • [1]

    T. Boddington, C.-G. Feng and P. Gray, Disappearance of criticality in thermal explosion under Frank-Kamenetskii boundary conditions, Combust. Flame, 48 (1982), 303-304.


    T. Boddington, C.-G. Feng and P. Gray, Thermal explosion, criticality and the disappearance of criticality in systems with distributed temperatures. I. Arbitrary Biot number and general reaction-rate laws, Proc. R. Soc. Lond. A, 390 (1983), 247-264.


    T. Boddington, C.-G. Feng and P. Gray, Thermal explosion and the theory of its initiation by steady intense light, Proc. R. Soc. Lond. A, 390 (1983), 265-281.


    T. Boddington, P. Gray and C. Robinson, Thermal explosion and the disappearance of criticality at small activation energies: exact results for the slab, Proc. R. Soc. Lond. A, 368 (1979), 441-461.


    M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180.


    Y. Du, Exact multiplicity and S-shaped bifurcation curve for some semilinear elliptic problems from combustion theory, SIAM J. Math. Anal., 32 (2000), 707-733.doi: 10.1137/S0036141098343586.


    K.-C. Hung and S.-H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differential Equations, 251 (2011), 223-237.doi: 10.1016/j.jde.2011.03.017.


    P. Korman and Y. Li, On the exactness of an S-shaped bifurcation curve, Proc. Amer. Math. Soc., 127 (1999), 1011-1020.doi: 10.1090/S0002-9939-99-04928-X.


    G. P. Miller, The structure of a stoichiometric CCI4-CH4-air flat flame, Combust. Flame, 101 (1995), 101-112.


    M. Mimura and K. Sakamoto, Multi-dimensional transition layers for an exothermic reaction-diffusion system in long cylindrical domains, J. Math. Sci. Univ. Tokyo, 3 (1996), 109-179.


    A. L. Sánchez, A. Liñán and F. A. Williams, Chain-branching explosions in mixing layers, SIAM J. Appl. Math., 59 (1999), 1335-1355.doi: 10.1137/S003613999732648X.


    K. Taira, Semilinear elliptic boundary-value problems in combustion theory, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1453-1476.


    S.-H. Wang, On S-shaped bifurcation curves, Nonlinear Anal., 22 (1994), 1475-1485.doi: 10.1016/0362-546X(94)90183-X.


    S.-H. Wang, Rigorous analysis and estimates of S-shaped bifurcation curves in a combustion problem with general Arrhenius reaction-rate laws, Proc. R. Soc. Lond. A, 454 (1998), 1031-1048.

  • 加载中

Article Metrics

HTML views() PDF downloads(50) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint