-
Previous Article
Primary birth of canard cycles in slow-fast codimension 3 elliptic bifurcations
- CPAA Home
- This Issue
-
Next Article
S-shaped bifurcation curves for a combustion problem with general arrhenius reaction-rate laws
Pattern formation and dynamic transition for magnetohydrodynamic convection
1. | Department of Mathematics, Purdue University, West Lafayette, IN 47906, United States |
2. | Department of Mathematics, Indiana University, Bloomington, IN 47405 |
References:
[1] |
Subrahmanyan Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, 1961. |
[2] |
Michael C. Cross and Pierre C. Hohenberg, Pattern formation outside of equilibrium, Reviews of Modern Physics, 65 (1993), 851-1112. |
[3] |
Alexander V. Getling, Rayleigh-Bénard Convection: Structures and Dynamics, World Scientific, River Edge, 1998. |
[4] |
Ernst L. Koschmieder, Bénard Cells and Taylor Vortices, Cambridge University Press, New York, 1993. |
[5] |
Tian Ma and Shouhong Wang, Bifurcation Theory and Applications, Hackensack, World Scientific Publishing, 2005.
doi: 10.1142/9789812701152. |
[6] |
Tian Ma and Shouhong Wang, Phase Transition Dynamics, Springer-Verlag, New York, 2013. |
[7] |
M. R. E. Proctor and N. O. Weiss, Magnetoconvection, Reports on Progress in Physics, 45 (1982), 1317-1379. |
[8] |
Roger Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, $2^{nd}$ edition, Springer-Verlag, New York, 1997. |
show all references
References:
[1] |
Subrahmanyan Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, 1961. |
[2] |
Michael C. Cross and Pierre C. Hohenberg, Pattern formation outside of equilibrium, Reviews of Modern Physics, 65 (1993), 851-1112. |
[3] |
Alexander V. Getling, Rayleigh-Bénard Convection: Structures and Dynamics, World Scientific, River Edge, 1998. |
[4] |
Ernst L. Koschmieder, Bénard Cells and Taylor Vortices, Cambridge University Press, New York, 1993. |
[5] |
Tian Ma and Shouhong Wang, Bifurcation Theory and Applications, Hackensack, World Scientific Publishing, 2005.
doi: 10.1142/9789812701152. |
[6] |
Tian Ma and Shouhong Wang, Phase Transition Dynamics, Springer-Verlag, New York, 2013. |
[7] |
M. R. E. Proctor and N. O. Weiss, Magnetoconvection, Reports on Progress in Physics, 45 (1982), 1317-1379. |
[8] |
Roger Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, $2^{nd}$ edition, Springer-Verlag, New York, 1997. |
[1] |
Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809 |
[2] |
Julien Barré, Pierre Degond, Diane Peurichard, Ewelina Zatorska. Modelling pattern formation through differential repulsion. Networks and Heterogeneous Media, 2020, 15 (3) : 307-352. doi: 10.3934/nhm.2020021 |
[3] |
Julien Cividini. Pattern formation in 2D traffic flows. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395 |
[4] |
Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589 |
[5] |
Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555 |
[6] |
Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217 |
[7] |
Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021, 8 (2) : 213-240. doi: 10.3934/jcd.2021010 |
[8] |
Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022103 |
[9] |
Martin Baurmann, Wolfgang Ebenhöh, Ulrike Feudel. Turing instabilities and pattern formation in a benthic nutrient-microorganism system. Mathematical Biosciences & Engineering, 2004, 1 (1) : 111-130. doi: 10.3934/mbe.2004.1.111 |
[10] |
Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597 |
[11] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[12] |
Evan C. Haskell, Jonathan Bell. Pattern formation in a predator-mediated coexistence model with prey-taxis. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2895-2921. doi: 10.3934/dcdsb.2020045 |
[13] |
Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031 |
[14] |
Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260 |
[15] |
Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170 |
[16] |
R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339 |
[17] |
Guanqi Liu, Yuwen Wang. Pattern formation of a coupled two-cell Schnakenberg model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1051-1062. doi: 10.3934/dcdss.2017056 |
[18] |
Hyung Ju Hwang, Thomas P. Witelski. Short-time pattern formation in thin film equations. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 867-885. doi: 10.3934/dcds.2009.23.867 |
[19] |
H. Malchow, F.M. Hilker, S.V. Petrovskii. Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 705-711. doi: 10.3934/dcdsb.2004.4.705 |
[20] |
Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]