-
Previous Article
The basis property of generalized Jacobian elliptic functions
- CPAA Home
- This Issue
-
Next Article
Pattern formation and dynamic transition for magnetohydrodynamic convection
Primary birth of canard cycles in slow-fast codimension 3 elliptic bifurcations
1. | Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium |
2. | Hasselt University, Campus Diepenbeek, Agoralaan-Gebouw D, B-3590 Diepenbeek, Belgium |
3. | Universiteit Hasselt, Campus Diepenbeek, Agoralaan–gebouw D, 3590 Diepenbeek |
References:
[1] |
P. De Maesschalck and F. Dumortier, Slow-fast Bogdanov-Takens bifurcations, J. Differential Equations, 250 (2011), 1000-1025.
doi: 10.1016/j.jde.2010.07.022. |
[2] |
F. Dumortier and R. Roussarie, Birth of canard cycles, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 723-781.
doi: 10.3934/dcdss.2009.2.723. |
[3] |
P. De Maesschalck and F. Dumortier, Singular perturbations and vanishing passage through a turning point, J. Differential Equations, 248 (2010), 2294-2328.
doi: 10.1016/j.jde.2009.11.009. |
[4] |
P. De Maesschalck and F. Dumortier, Canard cycles in the presence of slow dynamics with singularities, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 265-299.
doi: 10.1017/S0308210506000199. |
[5] |
F. Dumortier, R. Roussarie, J. Sotomayor, and H. Zoladek, Bifurcations of Planar Vector Fields, Lecture Notes in Mathematics, 1480, Springer-Verlag, Berlin, 1991. |
[6] |
Freddy Dumortier, Compactification and desingularization of spaces of polynomial Liénard equations, J. Differential Equations, 224 (2006), 296-313.
doi: 10.1016/j.jde.2005.08.011. |
[7] |
Robert Roussarie, Putting a boundary to the space of Liénard equations, Discrete Contin. Dyn. Syst., 17 (2007), 441-448.
doi: 10.3934/dcds.2007.17.441. |
[8] |
R. Huzak, P. De Maesschalck and F. Dumortier, Limit cycles in slow-fast codimension 3 saddle and elliptic bifurcations, J. Differential Equations, 255 (2013), 4012-4051.
doi: 10.1016/j.jde.2013.07.057. |
[9] |
Peter De Maesschalck and Freddy Dumortier, Detectable canard cycles with singular slow dynamics of any order at the turning point, Discrete Contin. Dyn. Syst., 29 (2011), 109-140.
doi: 10.3934/dcds.2011.29.109. |
[10] |
P. De Maesschalck and F. Dumortier, Time analysis and entry-exit relation near planar turning points, J. Differential Equations, 215 (2005), 225-267.
doi: 10.1016/j.jde.2005.01.004. |
[11] |
P. Bonckaert, P. De Maesschalck and F. Dumortier, Well adapted normal linearization in singular perturbation problems, J. Dynam. Differential Equations, 23 (2011), 115-139.
doi: 10.1007/s10884-010-9191-0. |
[12] |
M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion, J. Differential Equations, 174 (2001), 312-368.
doi: 10.1006/jdeq.2000.3929. |
[13] |
Daniel Panazzolo, Desingularization of nilpotent singularities in families of planar vector fields, Mem. Amer. Math. Soc., 158 (2002).
doi: 10.1090/memo/0753. |
[14] |
J. Llibre, A survey on the limit cycles of the generalized polynomial Liénard differential equations, Mathematical models in engineering, biology and medicine, AIP Conf. Proc., 1124 (2009), 224-233. |
show all references
References:
[1] |
P. De Maesschalck and F. Dumortier, Slow-fast Bogdanov-Takens bifurcations, J. Differential Equations, 250 (2011), 1000-1025.
doi: 10.1016/j.jde.2010.07.022. |
[2] |
F. Dumortier and R. Roussarie, Birth of canard cycles, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 723-781.
doi: 10.3934/dcdss.2009.2.723. |
[3] |
P. De Maesschalck and F. Dumortier, Singular perturbations and vanishing passage through a turning point, J. Differential Equations, 248 (2010), 2294-2328.
doi: 10.1016/j.jde.2009.11.009. |
[4] |
P. De Maesschalck and F. Dumortier, Canard cycles in the presence of slow dynamics with singularities, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 265-299.
doi: 10.1017/S0308210506000199. |
[5] |
F. Dumortier, R. Roussarie, J. Sotomayor, and H. Zoladek, Bifurcations of Planar Vector Fields, Lecture Notes in Mathematics, 1480, Springer-Verlag, Berlin, 1991. |
[6] |
Freddy Dumortier, Compactification and desingularization of spaces of polynomial Liénard equations, J. Differential Equations, 224 (2006), 296-313.
doi: 10.1016/j.jde.2005.08.011. |
[7] |
Robert Roussarie, Putting a boundary to the space of Liénard equations, Discrete Contin. Dyn. Syst., 17 (2007), 441-448.
doi: 10.3934/dcds.2007.17.441. |
[8] |
R. Huzak, P. De Maesschalck and F. Dumortier, Limit cycles in slow-fast codimension 3 saddle and elliptic bifurcations, J. Differential Equations, 255 (2013), 4012-4051.
doi: 10.1016/j.jde.2013.07.057. |
[9] |
Peter De Maesschalck and Freddy Dumortier, Detectable canard cycles with singular slow dynamics of any order at the turning point, Discrete Contin. Dyn. Syst., 29 (2011), 109-140.
doi: 10.3934/dcds.2011.29.109. |
[10] |
P. De Maesschalck and F. Dumortier, Time analysis and entry-exit relation near planar turning points, J. Differential Equations, 215 (2005), 225-267.
doi: 10.1016/j.jde.2005.01.004. |
[11] |
P. Bonckaert, P. De Maesschalck and F. Dumortier, Well adapted normal linearization in singular perturbation problems, J. Dynam. Differential Equations, 23 (2011), 115-139.
doi: 10.1007/s10884-010-9191-0. |
[12] |
M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion, J. Differential Equations, 174 (2001), 312-368.
doi: 10.1006/jdeq.2000.3929. |
[13] |
Daniel Panazzolo, Desingularization of nilpotent singularities in families of planar vector fields, Mem. Amer. Math. Soc., 158 (2002).
doi: 10.1090/memo/0753. |
[14] |
J. Llibre, A survey on the limit cycles of the generalized polynomial Liénard differential equations, Mathematical models in engineering, biology and medicine, AIP Conf. Proc., 1124 (2009), 224-233. |
[1] |
Kazuyuki Yagasaki. Existence of finite time blow-up solutions in a normal form of the subcritical Hopf bifurcation with time-delayed feedback for small initial functions. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2621-2634. doi: 10.3934/dcdsb.2021151 |
[2] |
José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43 |
[3] |
Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure and Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521 |
[4] |
Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661 |
[5] |
Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042 |
[6] |
Philippe Souplet, Juan-Luis Vázquez. Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 221-234. doi: 10.3934/dcds.2006.14.221 |
[7] |
Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure and Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697 |
[8] |
C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88 |
[9] |
Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020 |
[10] |
Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443 |
[11] |
Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1 |
[12] |
Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155 |
[13] |
Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 |
[14] |
W. Edward Olmstead, Colleen M. Kirk, Catherine A. Roberts. Blow-up in a subdiffusive medium with advection. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1655-1667. doi: 10.3934/dcds.2010.28.1655 |
[15] |
Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691 |
[16] |
Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267 |
[17] |
Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086 |
[18] |
Stefan Siegmund. Normal form of Duffing-van der Pol oscillator under nonautonomous parametric perturbations. Conference Publications, 2001, 2001 (Special) : 357-361. doi: 10.3934/proc.2001.2001.357 |
[19] |
Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249 |
[20] |
Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]