November  2014, 13(6): 2693-2712. doi: 10.3934/cpaa.2014.13.2693

Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment

1. 

Department of Mathematics, Mechanics and Informatics, Hanoi National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

2. 

Department of Mathematics, Wayne State University, Detroit, MI 48202, United States

Received  October 2013 Revised  March 2014 Published  July 2014

The paper is concerned with the asymptotic behavior of two species population whose densities are described by Kolmogorov systems of predator-prey type in random environment. We study the omega-limit set and find conditions ensuring the existence and attractivity of a stationary density. Some applications to the predator-prey model with Beddington-DeAngelis functional response are considered to illustrate our results.
Citation: Nguyen Huu Du, Nguyen Hai Dang. Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2693-2712. doi: 10.3934/cpaa.2014.13.2693
References:
[1]

L. Arnold, Random Dynamical Systems,, Springer-Verlag, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

P. Auger, N. H. Du and N. T. Hieu, Evolution of Lotka-Volterra predator-prey systems under telegraph noise,, \emph{Math. Biosci. Eng.}, 6 (2009), 683.  doi: 10.3934/mbe.2009.6.683.  Google Scholar

[3]

A. D. Bazykin, Nonlinear Dynamics of Interacting Populations,, World Scientific, (1998).  doi: 10.1142/9789812798725.  Google Scholar

[4]

A. Bobrowski, T. Lipniacki, K. Pichor and R. Rudnicki, Asymptotic behavior of distributions of mRNA and protein levels in a model of stochastic gene expression,, \emph{J. Math. Anal. Appl.}, 333 (2007), 753.  doi: 10.1016/j.jmaa.2006.11.043.  Google Scholar

[5]

Z. Brzeniak, M. Capifiski and F. Flandoli, Pathwise global attractors for stationary random dynamical systems,, \emph{Probab. Theory Relat. Fields}, 95 (1993), 87.  doi: 10.1007/BF01197339.  Google Scholar

[6]

N. H. Dang, N. H. Du and T. V. Ton, Asymptotic behavior of predator-prey systems perturbed by white noise,, \emph{Acta Appl. Math.}, (2011), 351.  doi: 10.1007/s10440-011-9628-4.  Google Scholar

[7]

N. H. Du and N. H. Dang, Dynamics of Kolmogorov systems of competitive type under the telegraph noise,, \emph{J. Differential Equations}, 250 (2011), 386.  doi: 10.1016/j.jde.2010.08.023.  Google Scholar

[8]

N. H. Du, R. Kon, K. Sato and Y. Takeuchi, Dynamical behavior of Lotka - Volterra competition systems: Non autonomous bistable case and the effect of telegraph noise,, \emph{J. Comput. Appl. Math}, 170 (2004), 399.  doi: 10.1016/j.cam.2004.02.001.  Google Scholar

[9]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, \emph{Probab. Theory Relat. Fields}, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[10]

I. I Gihman and A. V. Skorohod, The Theory of Stochastic Processes,, Springer-Verlag, (1979).   Google Scholar

[11]

T. W. Hwang, Global analysis of the predator-prey system with Beddington DeAngelis functional response,, \emph{J. Math. Anal. Appl.}, 281 (2003), 395.   Google Scholar

[12]

T. W. Hwang, Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response,, \emph{J. Math. Anal. Appl., 290 (2004), 113.  doi: 10.1016/j.jmaa.2003.09.073.  Google Scholar

[13]

C. Ji and D. Jiang, Dynamics of a stochastic density dependent predator-prey system with Beddington-DeAngelis functional response,, \emph{J. Math. Anal. Appl.}, 381 (2011), 441.  doi: 10.1016/j.jmaa.2011.02.037.  Google Scholar

[14]

C. Ji, D. Jiang and N. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation,, \emph{J. Math. Anal. Appl}., 359 (2009), 482.  doi: 10.1016/j.jmaa.2009.05.039.  Google Scholar

[15]

Q. Luo and X. Mao, Stochastic population dynamics under regime switching,, \emph{J. Math. Anal. Appl.}, 334 (2007), 69.  doi: 10.1016/j.jmaa.2006.12.032.  Google Scholar

[16]

Q. Luo and X. Mao, Stochastic population dynamics under regime switching. II,, \emph{J. Math. Anal. Appl.}, 355 (2009), 577.  doi: 10.1016/j.jmaa.2009.02.010.  Google Scholar

[17]

X. Mao, Attraction, stability and boundedness for stochastic differential delay equations,, \emph{Nonlinear Analysis: Theory, 47 (2001), 4795.  doi: 10.1016/S0362-546X(01)00591-0.  Google Scholar

[18]

X. Mao, S. Sabanis and E. Renshaw, Asymptotic behaviour of the stochastic Lotka-Volterra model,, \emph{J. Math. Anal. Appl.}, 287 (2003), 141.  doi: 10.1016/S0022-247X(03)00539-0.  Google Scholar

[19]

L. Michael, Conservative Markov processes on a topological space,, \emph{Israel J. Math.}, 8 (1970), 165.   Google Scholar

[20]

J. D. Murray, Mathematical Biology,, Springer-Verlag, (2002).  doi: 10.1007/b98869.  Google Scholar

[21]

K. Pichór and R. Rudnicki, Continuous Markov semigroups and stability of transport equations,, \emph{J. Math. Anal. Appl.}, 249 (2000), 668.  doi: 10.1006/jmaa.2000.6968.  Google Scholar

[22]

R. Rudnicki, K. Pichór and M. Tyran-Kaminska, Markov semigroups and their applications,, in \emph{Dynamics of Dissipation} (P. Garbaczewski and R. Olkiewicz Eds), (2002), 215.   Google Scholar

[23]

Y. Takeuchi, N. H. Du, N. T. Hieu and K. Sato, Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment,, \emph{J. Math. Anal. Appl.}, 323 (2006), 938.  doi: 10.1016/j.jmaa.2005.11.009.  Google Scholar

[24]

C. Yuan and X. Mao, Attraction and stochastic asymptotic stability and boundedness of stochastic functional differential equations with respect to semimartingales,, \emph{Stochastic Analysis and Applications}, 24 (2006), 1169.  doi: 10.1080/07362990600958937.  Google Scholar

[25]

C. Zhu and G. Yin, On competitive Lotka-Volterra model in random environments,, \emph{Journal of Mathematical Analysis and Applications}, 357 (2009), 154.  doi: 10.1016/j.jmaa.2009.03.066.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems,, Springer-Verlag, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

P. Auger, N. H. Du and N. T. Hieu, Evolution of Lotka-Volterra predator-prey systems under telegraph noise,, \emph{Math. Biosci. Eng.}, 6 (2009), 683.  doi: 10.3934/mbe.2009.6.683.  Google Scholar

[3]

A. D. Bazykin, Nonlinear Dynamics of Interacting Populations,, World Scientific, (1998).  doi: 10.1142/9789812798725.  Google Scholar

[4]

A. Bobrowski, T. Lipniacki, K. Pichor and R. Rudnicki, Asymptotic behavior of distributions of mRNA and protein levels in a model of stochastic gene expression,, \emph{J. Math. Anal. Appl.}, 333 (2007), 753.  doi: 10.1016/j.jmaa.2006.11.043.  Google Scholar

[5]

Z. Brzeniak, M. Capifiski and F. Flandoli, Pathwise global attractors for stationary random dynamical systems,, \emph{Probab. Theory Relat. Fields}, 95 (1993), 87.  doi: 10.1007/BF01197339.  Google Scholar

[6]

N. H. Dang, N. H. Du and T. V. Ton, Asymptotic behavior of predator-prey systems perturbed by white noise,, \emph{Acta Appl. Math.}, (2011), 351.  doi: 10.1007/s10440-011-9628-4.  Google Scholar

[7]

N. H. Du and N. H. Dang, Dynamics of Kolmogorov systems of competitive type under the telegraph noise,, \emph{J. Differential Equations}, 250 (2011), 386.  doi: 10.1016/j.jde.2010.08.023.  Google Scholar

[8]

N. H. Du, R. Kon, K. Sato and Y. Takeuchi, Dynamical behavior of Lotka - Volterra competition systems: Non autonomous bistable case and the effect of telegraph noise,, \emph{J. Comput. Appl. Math}, 170 (2004), 399.  doi: 10.1016/j.cam.2004.02.001.  Google Scholar

[9]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, \emph{Probab. Theory Relat. Fields}, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[10]

I. I Gihman and A. V. Skorohod, The Theory of Stochastic Processes,, Springer-Verlag, (1979).   Google Scholar

[11]

T. W. Hwang, Global analysis of the predator-prey system with Beddington DeAngelis functional response,, \emph{J. Math. Anal. Appl.}, 281 (2003), 395.   Google Scholar

[12]

T. W. Hwang, Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response,, \emph{J. Math. Anal. Appl., 290 (2004), 113.  doi: 10.1016/j.jmaa.2003.09.073.  Google Scholar

[13]

C. Ji and D. Jiang, Dynamics of a stochastic density dependent predator-prey system with Beddington-DeAngelis functional response,, \emph{J. Math. Anal. Appl.}, 381 (2011), 441.  doi: 10.1016/j.jmaa.2011.02.037.  Google Scholar

[14]

C. Ji, D. Jiang and N. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation,, \emph{J. Math. Anal. Appl}., 359 (2009), 482.  doi: 10.1016/j.jmaa.2009.05.039.  Google Scholar

[15]

Q. Luo and X. Mao, Stochastic population dynamics under regime switching,, \emph{J. Math. Anal. Appl.}, 334 (2007), 69.  doi: 10.1016/j.jmaa.2006.12.032.  Google Scholar

[16]

Q. Luo and X. Mao, Stochastic population dynamics under regime switching. II,, \emph{J. Math. Anal. Appl.}, 355 (2009), 577.  doi: 10.1016/j.jmaa.2009.02.010.  Google Scholar

[17]

X. Mao, Attraction, stability and boundedness for stochastic differential delay equations,, \emph{Nonlinear Analysis: Theory, 47 (2001), 4795.  doi: 10.1016/S0362-546X(01)00591-0.  Google Scholar

[18]

X. Mao, S. Sabanis and E. Renshaw, Asymptotic behaviour of the stochastic Lotka-Volterra model,, \emph{J. Math. Anal. Appl.}, 287 (2003), 141.  doi: 10.1016/S0022-247X(03)00539-0.  Google Scholar

[19]

L. Michael, Conservative Markov processes on a topological space,, \emph{Israel J. Math.}, 8 (1970), 165.   Google Scholar

[20]

J. D. Murray, Mathematical Biology,, Springer-Verlag, (2002).  doi: 10.1007/b98869.  Google Scholar

[21]

K. Pichór and R. Rudnicki, Continuous Markov semigroups and stability of transport equations,, \emph{J. Math. Anal. Appl.}, 249 (2000), 668.  doi: 10.1006/jmaa.2000.6968.  Google Scholar

[22]

R. Rudnicki, K. Pichór and M. Tyran-Kaminska, Markov semigroups and their applications,, in \emph{Dynamics of Dissipation} (P. Garbaczewski and R. Olkiewicz Eds), (2002), 215.   Google Scholar

[23]

Y. Takeuchi, N. H. Du, N. T. Hieu and K. Sato, Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment,, \emph{J. Math. Anal. Appl.}, 323 (2006), 938.  doi: 10.1016/j.jmaa.2005.11.009.  Google Scholar

[24]

C. Yuan and X. Mao, Attraction and stochastic asymptotic stability and boundedness of stochastic functional differential equations with respect to semimartingales,, \emph{Stochastic Analysis and Applications}, 24 (2006), 1169.  doi: 10.1080/07362990600958937.  Google Scholar

[25]

C. Zhu and G. Yin, On competitive Lotka-Volterra model in random environments,, \emph{Journal of Mathematical Analysis and Applications}, 357 (2009), 154.  doi: 10.1016/j.jmaa.2009.03.066.  Google Scholar

[1]

P. Auger, N. H. Du, N. T. Hieu. Evolution of Lotka-Volterra predator-prey systems under telegraph noise. Mathematical Biosciences & Engineering, 2009, 6 (4) : 683-700. doi: 10.3934/mbe.2009.6.683

[2]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[3]

Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124

[4]

Hongxiao Hu, Liguang Xu, Kai Wang. A comparison of deterministic and stochastic predator-prey models with disease in the predator. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2837-2863. doi: 10.3934/dcdsb.2018289

[5]

Fei Xu, Ross Cressman, Vlastimil Křivan. Evolution of mobility in predator-prey systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3397-3432. doi: 10.3934/dcdsb.2014.19.3397

[6]

Christian Kuehn, Thilo Gross. Nonlocal generalized models of predator-prey systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 693-720. doi: 10.3934/dcdsb.2013.18.693

[7]

Guanqi Liu, Yuwen Wang. Stochastic spatiotemporal diffusive predator-prey systems. Communications on Pure & Applied Analysis, 2018, 17 (1) : 67-84. doi: 10.3934/cpaa.2018005

[8]

Henri Berestycki, Alessandro Zilio. Predator-prey models with competition, Part Ⅲ: Classification of stationary solutions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7141-7162. doi: 10.3934/dcds.2019299

[9]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[10]

Xiang-Sheng Wang, Haiyan Wang, Jianhong Wu. Traveling waves of diffusive predator-prey systems: Disease outbreak propagation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3303-3324. doi: 10.3934/dcds.2012.32.3303

[11]

Patrick D. Leenheer, David Angeli, Eduardo D. Sontag. On Predator-Prey Systems and Small-Gain Theorems. Mathematical Biosciences & Engineering, 2005, 2 (1) : 25-42. doi: 10.3934/mbe.2005.2.25

[12]

Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020130

[13]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure & Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[14]

Peter A. Braza. Predator-Prey Dynamics with Disease in the Prey. Mathematical Biosciences & Engineering, 2005, 2 (4) : 703-717. doi: 10.3934/mbe.2005.2.703

[15]

Ke Wang, Qi Wang, Feng Yu. Stationary and time-periodic patterns of two-predator and one-prey systems with prey-taxis. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 505-543. doi: 10.3934/dcds.2017021

[16]

Zhifu Xie. Turing instability in a coupled predator-prey model with different Holling type functional responses. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1621-1628. doi: 10.3934/dcdss.2011.4.1621

[17]

Sze-Bi Hsu, Tzy-Wei Hwang, Yang Kuang. Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 857-871. doi: 10.3934/dcdsb.2008.10.857

[18]

Kolade M. Owolabi. Dynamical behaviour of fractional-order predator-prey system of Holling-type. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 823-834. doi: 10.3934/dcdss.2020047

[19]

Kexin Wang. Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019247

[20]

Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]