• Previous Article
    The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas
  • CPAA Home
  • This Issue
  • Next Article
    Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment
November  2014, 13(6): 2713-2731. doi: 10.3934/cpaa.2014.13.2713

Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions

1. 

Department of Mathematics & Statistics, Mississippi State University, Mississippi State, MS 39762

2. 

Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, United States

3. 

Department of Mathematics Education, Pusan National University, Busan, 609-735

4. 

Department of Mathematics Education, Pusan National University, Busan, South Korea

Received  November 2013 Revised  March 2014 Published  July 2014

We study positive radial solutions to the boundary value problem \begin{eqnarray} -\Delta u = \lambda K(|x|)f(u), \quad x \in \Omega, \\ \frac{\partial u}{\partial \eta}+\tilde{c}(u)u = 0, \quad |x|=r_0, \\ u(x) \rightarrow 0, \quad |x|\rightarrow \infty, \end{eqnarray} where $\Delta u=div \big(\nabla u\big)$ is the Laplacian of $u$, $\lambda$ is a positive parameter, $\Omega=\{x \in \mathbb{R}^N| N>2, |x|> r_0 \mbox{ with }r_0>0\}$, $K:[r_0, \infty)\rightarrow(0,\infty)$ is a continuous function such that $\lim_{r \rightarrow \infty}K(r)=0$, $\frac{\partial}{\partial \eta}$ is the outward normal derivative, and $\tilde{c}:[0,\infty) \rightarrow (0,\infty)$ is a continuous function. We consider various $C^1$ classes of the reaction term $f:[0,\infty) \rightarrow \mathbb{R}$ that are sublinear at $\infty$ $(i.e. \lim_{s \rightarrow \infty}\frac{f(s)}{s}=0)$. In particular, we discuss existence and multiplicity results for classes of $f$ with $(a)$ $f(0)>0$, $(b)$ $f(0)<0$, and $(c)$ $f(0)=0$. We establish our existence and multiplicity results via the method of sub-super solutions. We also discuss some uniqueness results.
Citation: Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713
References:
[1]

I. Ali, A. Castro and R. Shivaji, Uniqueness and stability of nonnegative solutions for semipositone problems in a ball,, \emph{Proc. Amer. Math. Soc.}, 117 (1993), 775.  doi: 10.2307/2159143.  Google Scholar

[2]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces,, \emph{SIAM Rev.}, 18 (1976), 620.   Google Scholar

[3]

A. Ambrosetti, D. Arcoya and B. Buffoni, Positive solutions for some semi-positone problems via bifurcation theory,, \emph{Differential Integral Equations}, 7 (1994), 655.   Google Scholar

[4]

K. J. Brown, M. M. A. Ibrahim and R. Shivaji, S-shaped bifurcation curves,, \emph{Nonlinear Anal. TMA}, 5 (1981), 475.  doi: 10.1016/0362-546X(81)90096-1.  Google Scholar

[5]

A. Castro, M. Hassanpour and R. Shivaji, Uniqueness of non-negative solutions for a semipositone problem with concave nonlinearity,, \emph{Comm. Partial Differential Equations}, 20 (1995), 1927.  doi: 10.1080/03605309508821157.  Google Scholar

[6]

A. Castro, L. Sankar and R. Shivaji, Uniqueness of nonnegative solutions for semipositone problems on exterior domains,, \emph{J. Math. Anal. Appl.}, 394 (2012), 432.  doi: 10.1016/j.jmaa.2012.04.005.  Google Scholar

[7]

A. Castro and R. Shivaji, Nonnegative solutions for a class of radially symmetric nonpositone problems,, \emph{Proc. Amer. Math. Soc.}, 106 (1989), 735.  doi: 10.2307/2047429.  Google Scholar

[8]

A. Castro and R. Shivaji, Uniqueness of positive solutions for a class of elliptic boundary value problems,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 98 (1984), 267.  doi: 10.1017/S0308210500013445.  Google Scholar

[9]

P. Clément and G. Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 4 (1987), 97.   Google Scholar

[10]

D. S. Cohen and T. W. Laetsch, Nonlinear boundary value problems suggested by chemical reactor theory,, \emph{J. Differential Equations}, 7 (1970), 217.   Google Scholar

[11]

E. N. Dancer, On the number of positive solutions of weakly nonlinear elliptic equations when a parameter is large,, \emph{Proc. London Math. Soc.}, 53 (1986), 439.  doi: 10.1112/plms/s3-53.3.429.  Google Scholar

[12]

E. N. Dancer and J. Shi, Uniqueness and nonexistence of positive solutions to semipositone problems,, \emph{Bull. London Math. Soc.}, 38 (2006), 1033.  doi: 10.1112/S0024609306018984.  Google Scholar

[13]

P. V. Gordon, E. Ko and R. Shivaji, Multiplicity and uniqueness of positive solutions for elliptic equations with nonlinear boundary conditions arising in a theory of thermal explosion,, \emph{Nonlinear Anal. Real World Appl.}, 15 (2014), 51.  doi: 10.1016/j.nonrwa.2013.05.005.  Google Scholar

[14]

F. Inkmann, Existence and multiplicity theorems for semilinear elliptic equations with nonlinear boundary conditions,, \emph{Indiana Univ. Math. J.}, 31 (1982), 213.  doi: 10.1512/iumj.1982.31.31019.  Google Scholar

[15]

H. B. Keller and D. S. Cohen, Some positone problems suggested by nonlinear heat generation,, \emph{J. Math. Mech.}, 16 (1967), 1361.   Google Scholar

[16]

E. Ko, E. Lee and R. Shivaji, Multiplicity results for classes of singular problems on an exterior domain,, \emph{Discrete Contin. Dyn. Syst}, 33 (2013), 5153.  doi: 10.3934/dcds.2013.33.5153.  Google Scholar

[17]

C. Maya and R. Shivaji, Multiple positive solutions for a class of semilinear elliptic boundary value problems,, \emph{Nonlinear Anal. TMA}, 38 (1999), 497.  doi: 10.1016/S0362-546X(98)00211-9.  Google Scholar

[18]

S. Oruganti, J. Shi and R. Shivaji, Diffusive logistic equation with constant yield harvesting. I. Steady states,, \emph{Trans. Amer. Math. Soc.}, 354 (2002), 3601.  doi: 10.1090/S0002-9947-02-03005-2.  Google Scholar

[19]

P. H. Rabinowitz, Pairs of positive solutions of nonlinear elliptic partial differential equations,, \emph{Indiana Univ. Math. J.}, 23 (): 174.   Google Scholar

[20]

L. Sankar, S. Sasi and R. Shivaji, Semipositone problems with falling zeros on exterior domains,, \emph{J. Math. Anal. Appl.}, 401 (2013), 146.  doi: 10.1016/j.jmaa.2012.11.031.  Google Scholar

[21]

R. Shivaji, A remark on the existence of three solutions via sub-super solutions,, \emph{Nonlinear analysis and applications}, 109 (1987), 561.   Google Scholar

[22]

R. Shivaji, Uniqueness results for a class of positone problems,, \emph{Nonlinear Anal. TMA}, 7 (1983), 223.  doi: 10.1016/0362-546X(83)90084-6.  Google Scholar

show all references

References:
[1]

I. Ali, A. Castro and R. Shivaji, Uniqueness and stability of nonnegative solutions for semipositone problems in a ball,, \emph{Proc. Amer. Math. Soc.}, 117 (1993), 775.  doi: 10.2307/2159143.  Google Scholar

[2]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces,, \emph{SIAM Rev.}, 18 (1976), 620.   Google Scholar

[3]

A. Ambrosetti, D. Arcoya and B. Buffoni, Positive solutions for some semi-positone problems via bifurcation theory,, \emph{Differential Integral Equations}, 7 (1994), 655.   Google Scholar

[4]

K. J. Brown, M. M. A. Ibrahim and R. Shivaji, S-shaped bifurcation curves,, \emph{Nonlinear Anal. TMA}, 5 (1981), 475.  doi: 10.1016/0362-546X(81)90096-1.  Google Scholar

[5]

A. Castro, M. Hassanpour and R. Shivaji, Uniqueness of non-negative solutions for a semipositone problem with concave nonlinearity,, \emph{Comm. Partial Differential Equations}, 20 (1995), 1927.  doi: 10.1080/03605309508821157.  Google Scholar

[6]

A. Castro, L. Sankar and R. Shivaji, Uniqueness of nonnegative solutions for semipositone problems on exterior domains,, \emph{J. Math. Anal. Appl.}, 394 (2012), 432.  doi: 10.1016/j.jmaa.2012.04.005.  Google Scholar

[7]

A. Castro and R. Shivaji, Nonnegative solutions for a class of radially symmetric nonpositone problems,, \emph{Proc. Amer. Math. Soc.}, 106 (1989), 735.  doi: 10.2307/2047429.  Google Scholar

[8]

A. Castro and R. Shivaji, Uniqueness of positive solutions for a class of elliptic boundary value problems,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 98 (1984), 267.  doi: 10.1017/S0308210500013445.  Google Scholar

[9]

P. Clément and G. Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 4 (1987), 97.   Google Scholar

[10]

D. S. Cohen and T. W. Laetsch, Nonlinear boundary value problems suggested by chemical reactor theory,, \emph{J. Differential Equations}, 7 (1970), 217.   Google Scholar

[11]

E. N. Dancer, On the number of positive solutions of weakly nonlinear elliptic equations when a parameter is large,, \emph{Proc. London Math. Soc.}, 53 (1986), 439.  doi: 10.1112/plms/s3-53.3.429.  Google Scholar

[12]

E. N. Dancer and J. Shi, Uniqueness and nonexistence of positive solutions to semipositone problems,, \emph{Bull. London Math. Soc.}, 38 (2006), 1033.  doi: 10.1112/S0024609306018984.  Google Scholar

[13]

P. V. Gordon, E. Ko and R. Shivaji, Multiplicity and uniqueness of positive solutions for elliptic equations with nonlinear boundary conditions arising in a theory of thermal explosion,, \emph{Nonlinear Anal. Real World Appl.}, 15 (2014), 51.  doi: 10.1016/j.nonrwa.2013.05.005.  Google Scholar

[14]

F. Inkmann, Existence and multiplicity theorems for semilinear elliptic equations with nonlinear boundary conditions,, \emph{Indiana Univ. Math. J.}, 31 (1982), 213.  doi: 10.1512/iumj.1982.31.31019.  Google Scholar

[15]

H. B. Keller and D. S. Cohen, Some positone problems suggested by nonlinear heat generation,, \emph{J. Math. Mech.}, 16 (1967), 1361.   Google Scholar

[16]

E. Ko, E. Lee and R. Shivaji, Multiplicity results for classes of singular problems on an exterior domain,, \emph{Discrete Contin. Dyn. Syst}, 33 (2013), 5153.  doi: 10.3934/dcds.2013.33.5153.  Google Scholar

[17]

C. Maya and R. Shivaji, Multiple positive solutions for a class of semilinear elliptic boundary value problems,, \emph{Nonlinear Anal. TMA}, 38 (1999), 497.  doi: 10.1016/S0362-546X(98)00211-9.  Google Scholar

[18]

S. Oruganti, J. Shi and R. Shivaji, Diffusive logistic equation with constant yield harvesting. I. Steady states,, \emph{Trans. Amer. Math. Soc.}, 354 (2002), 3601.  doi: 10.1090/S0002-9947-02-03005-2.  Google Scholar

[19]

P. H. Rabinowitz, Pairs of positive solutions of nonlinear elliptic partial differential equations,, \emph{Indiana Univ. Math. J.}, 23 (): 174.   Google Scholar

[20]

L. Sankar, S. Sasi and R. Shivaji, Semipositone problems with falling zeros on exterior domains,, \emph{J. Math. Anal. Appl.}, 401 (2013), 146.  doi: 10.1016/j.jmaa.2012.11.031.  Google Scholar

[21]

R. Shivaji, A remark on the existence of three solutions via sub-super solutions,, \emph{Nonlinear analysis and applications}, 109 (1987), 561.   Google Scholar

[22]

R. Shivaji, Uniqueness results for a class of positone problems,, \emph{Nonlinear Anal. TMA}, 7 (1983), 223.  doi: 10.1016/0362-546X(83)90084-6.  Google Scholar

[1]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[2]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[3]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[4]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[5]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[6]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[7]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[8]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[9]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[10]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[11]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[12]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[13]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[14]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[15]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[16]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[17]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[18]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[19]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[20]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (7)

[Back to Top]