    • Previous Article
The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas
• CPAA Home
• This Issue
• Next Article
Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment
November  2014, 13(6): 2713-2731. doi: 10.3934/cpaa.2014.13.2713

## Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions

 1 Department of Mathematics & Statistics, Mississippi State University, Mississippi State, MS 39762 2 Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, United States 3 Department of Mathematics Education, Pusan National University, Busan, 609-735 4 Department of Mathematics Education, Pusan National University, Busan, South Korea

Received  November 2013 Revised  March 2014 Published  July 2014

We study positive radial solutions to the boundary value problem \begin{eqnarray} -\Delta u = \lambda K(|x|)f(u), \quad x \in \Omega, \\ \frac{\partial u}{\partial \eta}+\tilde{c}(u)u = 0, \quad |x|=r_0, \\ u(x) \rightarrow 0, \quad |x|\rightarrow \infty, \end{eqnarray} where $\Delta u=div \big(\nabla u\big)$ is the Laplacian of $u$, $\lambda$ is a positive parameter, $\Omega=\{x \in \mathbb{R}^N| N>2, |x|> r_0 \mbox{ with }r_0>0\}$, $K:[r_0, \infty)\rightarrow(0,\infty)$ is a continuous function such that $\lim_{r \rightarrow \infty}K(r)=0$, $\frac{\partial}{\partial \eta}$ is the outward normal derivative, and $\tilde{c}:[0,\infty) \rightarrow (0,\infty)$ is a continuous function. We consider various $C^1$ classes of the reaction term $f:[0,\infty) \rightarrow \mathbb{R}$ that are sublinear at $\infty$ $(i.e. \lim_{s \rightarrow \infty}\frac{f(s)}{s}=0)$. In particular, we discuss existence and multiplicity results for classes of $f$ with $(a)$ $f(0)>0$, $(b)$ $f(0)<0$, and $(c)$ $f(0)=0$. We establish our existence and multiplicity results via the method of sub-super solutions. We also discuss some uniqueness results.
Citation: Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713
##### References:
  I. Ali, A. Castro and R. Shivaji, Uniqueness and stability of nonnegative solutions for semipositone problems in a ball,, \emph{Proc. Amer. Math. Soc.}, 117 (1993), 775.  doi: 10.2307/2159143.  Google Scholar  H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces,, \emph{SIAM Rev.}, 18 (1976), 620. Google Scholar  A. Ambrosetti, D. Arcoya and B. Buffoni, Positive solutions for some semi-positone problems via bifurcation theory,, \emph{Differential Integral Equations}, 7 (1994), 655. Google Scholar  K. J. Brown, M. M. A. Ibrahim and R. Shivaji, S-shaped bifurcation curves,, \emph{Nonlinear Anal. TMA}, 5 (1981), 475.  doi: 10.1016/0362-546X(81)90096-1.  Google Scholar  A. Castro, M. Hassanpour and R. Shivaji, Uniqueness of non-negative solutions for a semipositone problem with concave nonlinearity,, \emph{Comm. Partial Differential Equations}, 20 (1995), 1927.  doi: 10.1080/03605309508821157.  Google Scholar  A. Castro, L. Sankar and R. Shivaji, Uniqueness of nonnegative solutions for semipositone problems on exterior domains,, \emph{J. Math. Anal. Appl.}, 394 (2012), 432.  doi: 10.1016/j.jmaa.2012.04.005.  Google Scholar  A. Castro and R. Shivaji, Nonnegative solutions for a class of radially symmetric nonpositone problems,, \emph{Proc. Amer. Math. Soc.}, 106 (1989), 735.  doi: 10.2307/2047429.  Google Scholar  A. Castro and R. Shivaji, Uniqueness of positive solutions for a class of elliptic boundary value problems,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 98 (1984), 267.  doi: 10.1017/S0308210500013445.  Google Scholar  P. Clément and G. Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 4 (1987), 97. Google Scholar  D. S. Cohen and T. W. Laetsch, Nonlinear boundary value problems suggested by chemical reactor theory,, \emph{J. Differential Equations}, 7 (1970), 217. Google Scholar  E. N. Dancer, On the number of positive solutions of weakly nonlinear elliptic equations when a parameter is large,, \emph{Proc. London Math. Soc.}, 53 (1986), 439.  doi: 10.1112/plms/s3-53.3.429.  Google Scholar  E. N. Dancer and J. Shi, Uniqueness and nonexistence of positive solutions to semipositone problems,, \emph{Bull. London Math. Soc.}, 38 (2006), 1033.  doi: 10.1112/S0024609306018984.  Google Scholar  P. V. Gordon, E. Ko and R. Shivaji, Multiplicity and uniqueness of positive solutions for elliptic equations with nonlinear boundary conditions arising in a theory of thermal explosion,, \emph{Nonlinear Anal. Real World Appl.}, 15 (2014), 51.  doi: 10.1016/j.nonrwa.2013.05.005.  Google Scholar  F. Inkmann, Existence and multiplicity theorems for semilinear elliptic equations with nonlinear boundary conditions,, \emph{Indiana Univ. Math. J.}, 31 (1982), 213.  doi: 10.1512/iumj.1982.31.31019.  Google Scholar  H. B. Keller and D. S. Cohen, Some positone problems suggested by nonlinear heat generation,, \emph{J. Math. Mech.}, 16 (1967), 1361. Google Scholar  E. Ko, E. Lee and R. Shivaji, Multiplicity results for classes of singular problems on an exterior domain,, \emph{Discrete Contin. Dyn. Syst}, 33 (2013), 5153.  doi: 10.3934/dcds.2013.33.5153.  Google Scholar  C. Maya and R. Shivaji, Multiple positive solutions for a class of semilinear elliptic boundary value problems,, \emph{Nonlinear Anal. TMA}, 38 (1999), 497.  doi: 10.1016/S0362-546X(98)00211-9.  Google Scholar  S. Oruganti, J. Shi and R. Shivaji, Diffusive logistic equation with constant yield harvesting. I. Steady states,, \emph{Trans. Amer. Math. Soc.}, 354 (2002), 3601.  doi: 10.1090/S0002-9947-02-03005-2.  Google Scholar  P. H. Rabinowitz, Pairs of positive solutions of nonlinear elliptic partial differential equations,, \emph{Indiana Univ. Math. J.}, 23 (): 174. Google Scholar  L. Sankar, S. Sasi and R. Shivaji, Semipositone problems with falling zeros on exterior domains,, \emph{J. Math. Anal. Appl.}, 401 (2013), 146.  doi: 10.1016/j.jmaa.2012.11.031.  Google Scholar  R. Shivaji, A remark on the existence of three solutions via sub-super solutions,, \emph{Nonlinear analysis and applications}, 109 (1987), 561. Google Scholar  R. Shivaji, Uniqueness results for a class of positone problems,, \emph{Nonlinear Anal. TMA}, 7 (1983), 223.  doi: 10.1016/0362-546X(83)90084-6.  Google Scholar

show all references

##### References:
  I. Ali, A. Castro and R. Shivaji, Uniqueness and stability of nonnegative solutions for semipositone problems in a ball,, \emph{Proc. Amer. Math. Soc.}, 117 (1993), 775.  doi: 10.2307/2159143.  Google Scholar  H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces,, \emph{SIAM Rev.}, 18 (1976), 620. Google Scholar  A. Ambrosetti, D. Arcoya and B. Buffoni, Positive solutions for some semi-positone problems via bifurcation theory,, \emph{Differential Integral Equations}, 7 (1994), 655. Google Scholar  K. J. Brown, M. M. A. Ibrahim and R. Shivaji, S-shaped bifurcation curves,, \emph{Nonlinear Anal. TMA}, 5 (1981), 475.  doi: 10.1016/0362-546X(81)90096-1.  Google Scholar  A. Castro, M. Hassanpour and R. Shivaji, Uniqueness of non-negative solutions for a semipositone problem with concave nonlinearity,, \emph{Comm. Partial Differential Equations}, 20 (1995), 1927.  doi: 10.1080/03605309508821157.  Google Scholar  A. Castro, L. Sankar and R. Shivaji, Uniqueness of nonnegative solutions for semipositone problems on exterior domains,, \emph{J. Math. Anal. Appl.}, 394 (2012), 432.  doi: 10.1016/j.jmaa.2012.04.005.  Google Scholar  A. Castro and R. Shivaji, Nonnegative solutions for a class of radially symmetric nonpositone problems,, \emph{Proc. Amer. Math. Soc.}, 106 (1989), 735.  doi: 10.2307/2047429.  Google Scholar  A. Castro and R. Shivaji, Uniqueness of positive solutions for a class of elliptic boundary value problems,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 98 (1984), 267.  doi: 10.1017/S0308210500013445.  Google Scholar  P. Clément and G. Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 4 (1987), 97. Google Scholar  D. S. Cohen and T. W. Laetsch, Nonlinear boundary value problems suggested by chemical reactor theory,, \emph{J. Differential Equations}, 7 (1970), 217. Google Scholar  E. N. Dancer, On the number of positive solutions of weakly nonlinear elliptic equations when a parameter is large,, \emph{Proc. London Math. Soc.}, 53 (1986), 439.  doi: 10.1112/plms/s3-53.3.429.  Google Scholar  E. N. Dancer and J. Shi, Uniqueness and nonexistence of positive solutions to semipositone problems,, \emph{Bull. London Math. Soc.}, 38 (2006), 1033.  doi: 10.1112/S0024609306018984.  Google Scholar  P. V. Gordon, E. Ko and R. Shivaji, Multiplicity and uniqueness of positive solutions for elliptic equations with nonlinear boundary conditions arising in a theory of thermal explosion,, \emph{Nonlinear Anal. Real World Appl.}, 15 (2014), 51.  doi: 10.1016/j.nonrwa.2013.05.005.  Google Scholar  F. Inkmann, Existence and multiplicity theorems for semilinear elliptic equations with nonlinear boundary conditions,, \emph{Indiana Univ. Math. J.}, 31 (1982), 213.  doi: 10.1512/iumj.1982.31.31019.  Google Scholar  H. B. Keller and D. S. Cohen, Some positone problems suggested by nonlinear heat generation,, \emph{J. Math. Mech.}, 16 (1967), 1361. Google Scholar  E. Ko, E. Lee and R. Shivaji, Multiplicity results for classes of singular problems on an exterior domain,, \emph{Discrete Contin. Dyn. Syst}, 33 (2013), 5153.  doi: 10.3934/dcds.2013.33.5153.  Google Scholar  C. Maya and R. Shivaji, Multiple positive solutions for a class of semilinear elliptic boundary value problems,, \emph{Nonlinear Anal. TMA}, 38 (1999), 497.  doi: 10.1016/S0362-546X(98)00211-9.  Google Scholar  S. Oruganti, J. Shi and R. Shivaji, Diffusive logistic equation with constant yield harvesting. I. Steady states,, \emph{Trans. Amer. Math. Soc.}, 354 (2002), 3601.  doi: 10.1090/S0002-9947-02-03005-2.  Google Scholar  P. H. Rabinowitz, Pairs of positive solutions of nonlinear elliptic partial differential equations,, \emph{Indiana Univ. Math. J.}, 23 (): 174. Google Scholar  L. Sankar, S. Sasi and R. Shivaji, Semipositone problems with falling zeros on exterior domains,, \emph{J. Math. Anal. Appl.}, 401 (2013), 146.  doi: 10.1016/j.jmaa.2012.11.031.  Google Scholar  R. Shivaji, A remark on the existence of three solutions via sub-super solutions,, \emph{Nonlinear analysis and applications}, 109 (1987), 561. Google Scholar  R. Shivaji, Uniqueness results for a class of positone problems,, \emph{Nonlinear Anal. TMA}, 7 (1983), 223.  doi: 10.1016/0362-546X(83)90084-6.  Google Scholar
  Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267  Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436  Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383  Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $p$ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442  Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $L^2$-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298  Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461  Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268  Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243  Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117  Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262  Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045  João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138  Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119  Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242  Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453  H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433  Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348  Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $q$-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440  Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118  Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

2019 Impact Factor: 1.105