-
Previous Article
Stable weak solutions of weighted nonlinear elliptic equations
- CPAA Home
- This Issue
-
Next Article
Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method
Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity
1. | University Tunis El Manar, Faculty of Sciences of Tunis, Department of Mathematics, 2092, Tunis, Tunisia |
References:
[1] |
S. Adachi and K. Tanaka, Trudinger type inequalities in $R^N$ and their best exponent,, Proc. Amer. Math. Society, 128 (1999), 2051.
doi: 10.1090/S0002-9939-99-05180-1. |
[2] |
A. Atallah Baraket, Local existence and estimations for a semilinear wave equation in two dimension space,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat, 8 (2004), 1.
doi: MR204459. |
[3] |
J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case,, J. Amer. Math. Soc., 12 (1999), 145.
doi: 10.1090/S0894-0347-99-00283-0. |
[4] |
T. Cazenave, An introduction to nonlinear Schrödinger equations,, Textos de Metodos Matematicos, 26 (1996).
|
[5] |
T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$,, Nonl. Anal. - TMA, 14 (1990), 807.
doi: 10.1016/0362-546X(90)90023-A. |
[6] |
J. Colliander, S. Ibrahim, M. Majdoub and N. Masmoudi, Energy critical NLS in two space dimensions,, J. Hyperbolic Differ. Equ, 6 (2009), 549.
doi: 10.1142/S0219891609001927. |
[7] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $R^3$,, Ann. Math., 167 (2008), 767.
doi: 10.4007/annals.2008.167.767. |
[8] |
G. M. Constantine and T. H. Savitis, A multivariate Faa Di Bruno formula with applications,, T. A. M. S, 348 (1996), 503.
|
[9] |
M. Keel and T. Tao, Endpoint Strichartz estimates,, A. M. S, 120 (1998), 955.
doi: 10.1016/0362-546X(90)90023-A. |
[10] |
V. A. Galaktionov and S. I. Pohozaev, Blow-up and critical exponents for nonlinear hyperbolic equations,, Nonlinear Analysis, 53 (2003), 453.
doi: 10.1016/S0362-546X(02)00311-5. |
[11] |
J. Ginibre and G. Velo, The Global Cauchy problem for nonlinear Klein-Gordon equation,, Math. Z, 189 (1985), 487.
doi: 10.1007/BF01168155. |
[12] |
M. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity,, Annal. of Math., 132 (1990), 485.
doi: 10.2307/1971427. |
[13] |
E. Hebey and B. Pausader, An introduction to fourth-order nonlinear wave equations,, (2008)., (2008). Google Scholar |
[14] |
S. Ibrahim, M. Majdoub and N. Masmoudi, Global solutions for a semilinear $2D$ Klein-Gordon equation with exponential type nonlinearity,, Comm. Pure App. Math, 59 (2006), 1639.
doi: 10.1002/cpa.20127. |
[15] |
S. Ibrahim, M. Majdoub and N. Masmoudi, Instability of $H^1$-supercritical waves,, C. R. Acad. Sci. Paris, 345 (2007), 133.
doi: 10.1016/j.crma.2007.06.008. |
[16] |
S. Ibrahim, M. Majdoub, N. Masmoudi and K. Nakanishi, Scattering for the $2D$ energy critical wave equation,, Duke Math., 150 (2009), 287.
doi: 10.1215/00127094-2009-053. |
[17] |
V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion fourth-order nonlinear Schrödinger equations,, Phys. Rev. E, 53 (1996), 1336.
doi: 10.1103/PhysRevE.53.R1336. |
[18] |
V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion,, Phys D, 144 (2000), 194.
doi: 10.1016/S0167-2789(00)00078-6. |
[19] |
C. E. Kenig and F. Merle, Global well-posedness, scattering and blow up for the energy-critical, focusing, nonlinear Schrödinger equation in the radial case,, Invent. Math., 166 (2006), 645.
doi: 10.1007/s11511-008-0031-6. |
[20] |
J. Kim, A. Arnold and X. Yao, Global estimates of fundamental solutions for higher-order Schrödinger equations,, \arXiv{0807.0690v2}., (). Google Scholar |
[21] |
J. Kim, A. Arnold and X. Yao, Estimates for a class of oscillatory integrals and decay rates for wave-type equations,, \arXiv{1109.0452v2}, (). Google Scholar |
[22] |
S. P. Levandosky, Stability and instability of fourth-order solitary waves,, J. Dynam. Differential Equations, 10 (1998), 151.
doi: 1040-7294/98/0100-0151S15.00/0. |
[23] |
S. P. Levandosky, Deacy estimates for fourth-order wave equations,, J. Differential Equations, 143 (1998), 360.
doi: 10.1006/jdeq.1997.3369. |
[24] |
S. P. Levandosky and W. A. Strauss, Time decay for the nonlinear beam equation,, Methods and Applications of Analysis, 7 (2000), 479.
doi: Zbl 1212.35476. |
[25] |
H. A Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{t t} = ..Au + F(u)$,, T. A. M. S, 192 (1974), 1.
|
[26] |
G. Lebeau, Nonlinear optics and supercritical wave equation,, Bull. Soc. R. Sci. Li\`ege, 70 (2001), 267.
|
[27] |
G. Lebeau, Perte de régularité pour l'équation des ondes surcritique,, Bull. Soc. Math. France, 133 (2005), 145.
|
[28] |
J. L. Lions, Une remarque sur les problèmes d'évolution non linéaires dans des domaines non cylindriques,, Revue Roumaine Math. Pur. Appl., 9 (1964), 129. Google Scholar |
[29] |
O. Mahouachi and T. Saanouni, Global well posedness and linearization of a semilinear wave equation with exponential growth,, Georgian Math. J., 17 (2010), 543.
doi: 10.1515/gmj.2010.026. |
[30] |
O. Mahouachi and T. Saanouni, Well and ill posedness issues for a class of $2D$ wave equation with exponential nonlinearity,, J. P. D. E, 24 (2011), 361.
doi: 10.4208/jpde.v24.n4.7. |
[31] |
M. Majdoub and T. Saanouni, Global well-posedness of some critical fourth-order wave and Schrödinger equation,, preprint., (). Google Scholar |
[32] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth-order in the radial case,, \arXiv{0807.0690v2 }., (). Google Scholar |
[33] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equations of fourth-order in dimensions $d\geq9$,, \arXiv{0807.0692v2}., (). Google Scholar |
[34] |
J. Moser, A sharp form of an inequality of N. Trudinger,, Ind. Univ. Math. J., 20 (1971), 1077.
|
[35] |
M. Nakamura and T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of critical order,, Journal of Functional Analysis, 155 (1998), 364.
doi: 10.1006/jfan.1997.3236. |
[36] |
M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth,, Math. Z, 231 (1999), 479.
doi: 10.1007/PL00004737. |
[37] |
T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem,, J. Math. Anal. Appl., 155 (1991), 531. Google Scholar |
[38] |
T. Ozawa, On critical cases of Sobolev's inequalities,, J. Funct. Anal., 127 (1995), 259.
doi: 10.1006/jfan.1995.1012. |
[39] |
B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case,, Dynamics of PDE, 4 (2007), 197.
doi: 01/2007.4:197-225. |
[40] |
B. Pausader, The cubic fourth-order Schrödinger equation,, Journal of Functional Analysis, 256 (2009), 2473.
doi: 10.1016/j.jfa.2008.11.009. |
[41] |
B. Pausader, Scattering and the Levandosky-Strauss conjecture for fourth-order nonlinear wave equations,, J. Differential Equations, 241 (2007), 237.
doi: 10.1016/j.jde.2007.06.001. |
[42] |
B. Pausader and W. Strauss, Analyticity of the scattering operator for the beam equation,, Discrete Contin. Dyn. Syst., 25 (2009), 617.
doi: 10.3934/dcds.2009.25.617. |
[43] |
L. Peletier and W. C. Troy, Higher order models in Physics and Mechanics,, Prog in Non Diff Eq and App, 45 (2001). Google Scholar |
[44] |
B. Ruf, A sharp Moser-Trudinger type inequality for unbounded domains in $R^2$,, J. Funct. Analysis, 219 (2004), 340.
doi: 10.1016/j.jfa.2004.06.013. |
[45] |
B. Ruf and S. Sani, Sharp Adams-type inequalities in $R^n$,, Trans. Amer. Math. Soc., 365 (2013), 645.
doi: 10.1090/S0002-9947-2012-05561-9. |
[46] |
E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $R^{1+4}$,, Amer. J. Math., 129 (2007), 1.
|
[47] |
T. Saanouni, Global well-posedness and scattering of a 2D Schrödinger equation with exponential growth,, Bull. Belg. Math. Soc., 17 (2010), 441.
|
[48] |
T. Saanouni, Decay of Solutions to a $2D$ Schrödinger Equation,, J. Part. Diff. Eq., 24 (2011), 37.
doi: 10.4208/jpde.v24.n1.3. |
[49] |
T. Saanouni, Scattering of a $2D$ Schrödinger equation with exponential growth in the conformal space,, Math. Meth. Appl. Sci, 33 (2010), 1046.
doi: 10.1002/mma.1237. |
[50] |
T. Saanouni, Remarks on the semilinear Schrödinger equation,, J. Math. Anal. Appl., 400 (2013), 331.
doi: 10.1016/j.jmaa.2012.11.037. |
[51] |
I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction,, Bull. Soc. Math. France, 91 (1963), 129. Google Scholar |
[52] |
Shangbin Cui and Cuihua Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces $H^s(\mathbbR^n)$ and applications,, Nonlinear Analysis, 67 (2007), 687.
doi: 10.1016/j.na.2006.06.020. |
[53] |
J. Shatah et M. Struwe, Well-posedness in the energy space for semilinear wave equation with critical growth,, IMRN, 7 (1994), 303.
doi: 10.1155/S1073792894000346. |
[54] |
W. A. Strauss, On weak solutions of semi-linear hyperbolic equations,, Anais Acad. Brasil. Cienc., 42 (1970), 645.
|
[55] |
M. Struwe, Semilinear wave equations,, Bull. Amer. Math. Soc, 26 (1992), 53.
|
[56] |
M. Struwe, The critical nonlinear wave equation in 2 space dimensions,, J. European Math. Soc. (to appear)., (). Google Scholar |
[57] |
M. Struwe, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions,, Math. Ann, 350 (2011), 707.
doi: 10.1007/s00208-010-0567-6. |
[58] |
T. Tao, Global well-posedness and scattering for the higher-dimensional energycritical non-linear Schrödinger equation for radial data,, New York J. of Math., 11 (2005), 57.
|
[59] |
N. S. Trudinger, On imbedding into Orlicz spaces and some applications,, J. Math. Mech., 17 (1967), 473.
|
[60] |
M. Visan, The defocusing energy-critical nolinear Schrödinger equation in higher dimensions,, Duke. Math. J., 138 (2007), 281.
doi: 10.1215/S0012-7094-07-13825-0. |
show all references
References:
[1] |
S. Adachi and K. Tanaka, Trudinger type inequalities in $R^N$ and their best exponent,, Proc. Amer. Math. Society, 128 (1999), 2051.
doi: 10.1090/S0002-9939-99-05180-1. |
[2] |
A. Atallah Baraket, Local existence and estimations for a semilinear wave equation in two dimension space,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat, 8 (2004), 1.
doi: MR204459. |
[3] |
J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case,, J. Amer. Math. Soc., 12 (1999), 145.
doi: 10.1090/S0894-0347-99-00283-0. |
[4] |
T. Cazenave, An introduction to nonlinear Schrödinger equations,, Textos de Metodos Matematicos, 26 (1996).
|
[5] |
T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$,, Nonl. Anal. - TMA, 14 (1990), 807.
doi: 10.1016/0362-546X(90)90023-A. |
[6] |
J. Colliander, S. Ibrahim, M. Majdoub and N. Masmoudi, Energy critical NLS in two space dimensions,, J. Hyperbolic Differ. Equ, 6 (2009), 549.
doi: 10.1142/S0219891609001927. |
[7] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $R^3$,, Ann. Math., 167 (2008), 767.
doi: 10.4007/annals.2008.167.767. |
[8] |
G. M. Constantine and T. H. Savitis, A multivariate Faa Di Bruno formula with applications,, T. A. M. S, 348 (1996), 503.
|
[9] |
M. Keel and T. Tao, Endpoint Strichartz estimates,, A. M. S, 120 (1998), 955.
doi: 10.1016/0362-546X(90)90023-A. |
[10] |
V. A. Galaktionov and S. I. Pohozaev, Blow-up and critical exponents for nonlinear hyperbolic equations,, Nonlinear Analysis, 53 (2003), 453.
doi: 10.1016/S0362-546X(02)00311-5. |
[11] |
J. Ginibre and G. Velo, The Global Cauchy problem for nonlinear Klein-Gordon equation,, Math. Z, 189 (1985), 487.
doi: 10.1007/BF01168155. |
[12] |
M. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity,, Annal. of Math., 132 (1990), 485.
doi: 10.2307/1971427. |
[13] |
E. Hebey and B. Pausader, An introduction to fourth-order nonlinear wave equations,, (2008)., (2008). Google Scholar |
[14] |
S. Ibrahim, M. Majdoub and N. Masmoudi, Global solutions for a semilinear $2D$ Klein-Gordon equation with exponential type nonlinearity,, Comm. Pure App. Math, 59 (2006), 1639.
doi: 10.1002/cpa.20127. |
[15] |
S. Ibrahim, M. Majdoub and N. Masmoudi, Instability of $H^1$-supercritical waves,, C. R. Acad. Sci. Paris, 345 (2007), 133.
doi: 10.1016/j.crma.2007.06.008. |
[16] |
S. Ibrahim, M. Majdoub, N. Masmoudi and K. Nakanishi, Scattering for the $2D$ energy critical wave equation,, Duke Math., 150 (2009), 287.
doi: 10.1215/00127094-2009-053. |
[17] |
V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion fourth-order nonlinear Schrödinger equations,, Phys. Rev. E, 53 (1996), 1336.
doi: 10.1103/PhysRevE.53.R1336. |
[18] |
V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion,, Phys D, 144 (2000), 194.
doi: 10.1016/S0167-2789(00)00078-6. |
[19] |
C. E. Kenig and F. Merle, Global well-posedness, scattering and blow up for the energy-critical, focusing, nonlinear Schrödinger equation in the radial case,, Invent. Math., 166 (2006), 645.
doi: 10.1007/s11511-008-0031-6. |
[20] |
J. Kim, A. Arnold and X. Yao, Global estimates of fundamental solutions for higher-order Schrödinger equations,, \arXiv{0807.0690v2}., (). Google Scholar |
[21] |
J. Kim, A. Arnold and X. Yao, Estimates for a class of oscillatory integrals and decay rates for wave-type equations,, \arXiv{1109.0452v2}, (). Google Scholar |
[22] |
S. P. Levandosky, Stability and instability of fourth-order solitary waves,, J. Dynam. Differential Equations, 10 (1998), 151.
doi: 1040-7294/98/0100-0151S15.00/0. |
[23] |
S. P. Levandosky, Deacy estimates for fourth-order wave equations,, J. Differential Equations, 143 (1998), 360.
doi: 10.1006/jdeq.1997.3369. |
[24] |
S. P. Levandosky and W. A. Strauss, Time decay for the nonlinear beam equation,, Methods and Applications of Analysis, 7 (2000), 479.
doi: Zbl 1212.35476. |
[25] |
H. A Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{t t} = ..Au + F(u)$,, T. A. M. S, 192 (1974), 1.
|
[26] |
G. Lebeau, Nonlinear optics and supercritical wave equation,, Bull. Soc. R. Sci. Li\`ege, 70 (2001), 267.
|
[27] |
G. Lebeau, Perte de régularité pour l'équation des ondes surcritique,, Bull. Soc. Math. France, 133 (2005), 145.
|
[28] |
J. L. Lions, Une remarque sur les problèmes d'évolution non linéaires dans des domaines non cylindriques,, Revue Roumaine Math. Pur. Appl., 9 (1964), 129. Google Scholar |
[29] |
O. Mahouachi and T. Saanouni, Global well posedness and linearization of a semilinear wave equation with exponential growth,, Georgian Math. J., 17 (2010), 543.
doi: 10.1515/gmj.2010.026. |
[30] |
O. Mahouachi and T. Saanouni, Well and ill posedness issues for a class of $2D$ wave equation with exponential nonlinearity,, J. P. D. E, 24 (2011), 361.
doi: 10.4208/jpde.v24.n4.7. |
[31] |
M. Majdoub and T. Saanouni, Global well-posedness of some critical fourth-order wave and Schrödinger equation,, preprint., (). Google Scholar |
[32] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth-order in the radial case,, \arXiv{0807.0690v2 }., (). Google Scholar |
[33] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equations of fourth-order in dimensions $d\geq9$,, \arXiv{0807.0692v2}., (). Google Scholar |
[34] |
J. Moser, A sharp form of an inequality of N. Trudinger,, Ind. Univ. Math. J., 20 (1971), 1077.
|
[35] |
M. Nakamura and T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of critical order,, Journal of Functional Analysis, 155 (1998), 364.
doi: 10.1006/jfan.1997.3236. |
[36] |
M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth,, Math. Z, 231 (1999), 479.
doi: 10.1007/PL00004737. |
[37] |
T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem,, J. Math. Anal. Appl., 155 (1991), 531. Google Scholar |
[38] |
T. Ozawa, On critical cases of Sobolev's inequalities,, J. Funct. Anal., 127 (1995), 259.
doi: 10.1006/jfan.1995.1012. |
[39] |
B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case,, Dynamics of PDE, 4 (2007), 197.
doi: 01/2007.4:197-225. |
[40] |
B. Pausader, The cubic fourth-order Schrödinger equation,, Journal of Functional Analysis, 256 (2009), 2473.
doi: 10.1016/j.jfa.2008.11.009. |
[41] |
B. Pausader, Scattering and the Levandosky-Strauss conjecture for fourth-order nonlinear wave equations,, J. Differential Equations, 241 (2007), 237.
doi: 10.1016/j.jde.2007.06.001. |
[42] |
B. Pausader and W. Strauss, Analyticity of the scattering operator for the beam equation,, Discrete Contin. Dyn. Syst., 25 (2009), 617.
doi: 10.3934/dcds.2009.25.617. |
[43] |
L. Peletier and W. C. Troy, Higher order models in Physics and Mechanics,, Prog in Non Diff Eq and App, 45 (2001). Google Scholar |
[44] |
B. Ruf, A sharp Moser-Trudinger type inequality for unbounded domains in $R^2$,, J. Funct. Analysis, 219 (2004), 340.
doi: 10.1016/j.jfa.2004.06.013. |
[45] |
B. Ruf and S. Sani, Sharp Adams-type inequalities in $R^n$,, Trans. Amer. Math. Soc., 365 (2013), 645.
doi: 10.1090/S0002-9947-2012-05561-9. |
[46] |
E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $R^{1+4}$,, Amer. J. Math., 129 (2007), 1.
|
[47] |
T. Saanouni, Global well-posedness and scattering of a 2D Schrödinger equation with exponential growth,, Bull. Belg. Math. Soc., 17 (2010), 441.
|
[48] |
T. Saanouni, Decay of Solutions to a $2D$ Schrödinger Equation,, J. Part. Diff. Eq., 24 (2011), 37.
doi: 10.4208/jpde.v24.n1.3. |
[49] |
T. Saanouni, Scattering of a $2D$ Schrödinger equation with exponential growth in the conformal space,, Math. Meth. Appl. Sci, 33 (2010), 1046.
doi: 10.1002/mma.1237. |
[50] |
T. Saanouni, Remarks on the semilinear Schrödinger equation,, J. Math. Anal. Appl., 400 (2013), 331.
doi: 10.1016/j.jmaa.2012.11.037. |
[51] |
I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction,, Bull. Soc. Math. France, 91 (1963), 129. Google Scholar |
[52] |
Shangbin Cui and Cuihua Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces $H^s(\mathbbR^n)$ and applications,, Nonlinear Analysis, 67 (2007), 687.
doi: 10.1016/j.na.2006.06.020. |
[53] |
J. Shatah et M. Struwe, Well-posedness in the energy space for semilinear wave equation with critical growth,, IMRN, 7 (1994), 303.
doi: 10.1155/S1073792894000346. |
[54] |
W. A. Strauss, On weak solutions of semi-linear hyperbolic equations,, Anais Acad. Brasil. Cienc., 42 (1970), 645.
|
[55] |
M. Struwe, Semilinear wave equations,, Bull. Amer. Math. Soc, 26 (1992), 53.
|
[56] |
M. Struwe, The critical nonlinear wave equation in 2 space dimensions,, J. European Math. Soc. (to appear)., (). Google Scholar |
[57] |
M. Struwe, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions,, Math. Ann, 350 (2011), 707.
doi: 10.1007/s00208-010-0567-6. |
[58] |
T. Tao, Global well-posedness and scattering for the higher-dimensional energycritical non-linear Schrödinger equation for radial data,, New York J. of Math., 11 (2005), 57.
|
[59] |
N. S. Trudinger, On imbedding into Orlicz spaces and some applications,, J. Math. Mech., 17 (1967), 473.
|
[60] |
M. Visan, The defocusing energy-critical nolinear Schrödinger equation in higher dimensions,, Duke. Math. J., 138 (2007), 281.
doi: 10.1215/S0012-7094-07-13825-0. |
[1] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[2] |
Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093 |
[3] |
Kai Jiang, Wei Si. High-order energy stable schemes of incommensurate phase-field crystal model. Electronic Research Archive, 2020, 28 (2) : 1077-1093. doi: 10.3934/era.2020059 |
[4] |
Lela Dorel. Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences & Engineering, 2011, 8 (2) : 549-560. doi: 10.3934/mbe.2011.8.549 |
[5] |
Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068 |
[6] |
Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174 |
[7] |
Marc Wolff, Stéphane Jaouen, Hervé Jourdren, Eric Sonnendrücker. High-order dimensionally split Lagrange-remap schemes for ideal magnetohydrodynamics. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 345-367. doi: 10.3934/dcdss.2012.5.345 |
[8] |
Abdelwahab Bensouilah, Sahbi Keraani. Smoothing property for the $ L^2 $-critical high-order NLS Ⅱ. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2961-2976. doi: 10.3934/dcds.2019123 |
[9] |
Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037 |
[10] |
Marc Bonnet. Inverse acoustic scattering using high-order small-inclusion expansion of misfit function. Inverse Problems & Imaging, 2018, 12 (4) : 921-953. doi: 10.3934/ipi.2018039 |
[11] |
Raymond H. Chan, Haixia Liang, Suhua Wei, Mila Nikolova, Xue-Cheng Tai. High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Problems & Imaging, 2015, 9 (1) : 55-77. doi: 10.3934/ipi.2015.9.55 |
[12] |
Shan Jiang, Li Liang, Meiling Sun, Fang Su. Uniform high-order convergence of multiscale finite element computation on a graded recursion for singular perturbation. Electronic Research Archive, 2020, 28 (2) : 935-949. doi: 10.3934/era.2020049 |
[13] |
Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic & Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033 |
[14] |
Phillip Colella. High-order finite-volume methods on locally-structured grids. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4247-4270. doi: 10.3934/dcds.2016.36.4247 |
[15] |
Andrey B. Muravnik. On the Cauchy problem for differential-difference parabolic equations with high-order nonlocal terms of general kind. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 541-561. doi: 10.3934/dcds.2006.16.541 |
[16] |
Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831 |
[17] |
Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027 |
[18] |
Ahmed El Kaimbillah, Oussama Bourihane, Bouazza Braikat, Mohammad Jamal, Foudil Mohri, Noureddine Damil. Efficient high-order implicit solvers for the dynamic of thin-walled beams with open cross section under external arbitrary loadings. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1685-1708. doi: 10.3934/dcdss.2019113 |
[19] |
Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110 |
[20] |
Prosenjit Roy. On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5207-5222. doi: 10.3934/dcds.2019212 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]