November  2014, 13(6): 2733-2748. doi: 10.3934/cpaa.2014.13.2733

The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas

1. 

Department of Mathematics, Shanghai University, Shanghai, 200444, China

Received  April 2014 Revised  June 2014 Published  July 2014

The collapse of a wedge-shaped dam containing fluid initially with a uniform velocity can be described as an expansion problem of gas into vacuum. It is an important class of binary interaction of rarefaction waves in the two dimensional Riemann problems for the compressible Euler equations. In this paper, we present various characteristic decompositions of the two dimensional pseudo-steady Euler equations for the generalized Chaplygin gas and obtain some priori estimates. By these estimates, we prove the global existence of solution to the expansion problem of a wedge of gas into vacuum with the half angle $\theta\in(0,\pi/2)$ for the generalized Chaplygin gas.
Citation: Ju Ge, Wancheng Sheng. The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2733-2748. doi: 10.3934/cpaa.2014.13.2733
References:
[1]

T. Chang, G. Q. Chen and S. Yang, On the 2-D Riemann problem for the compressible Euler equations I. Interaction of shocks and rarefaction waves,, \emph{Discrete and Continuous Dynamical Systems}, 1 (1995), 555.  doi: 10.3934/dcds.1995.1.555.  Google Scholar

[2]

T. Chang, G. Q. Chen and S. Yang, On the 2-D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities,, \emph{Discrete and Continuous Dynamical Systems}, 6 (2000), 419.  doi: 10.3934/dcds.2000.6.419.  Google Scholar

[3]

T. Chang and L. Hsiao, The Riemann problem and interaction of waves in gas dynamics,, \emph{Pitman Monographs, 41 (1989), 95.   Google Scholar

[4]

S. X. Chen and A. F. Qu, Two-dimensional Riemann problems for Chaplygin gas,, \emph{SIAM J. Math. Anal.}, 44 (2012), 2146.  doi: 10.1137/110838091.  Google Scholar

[5]

X. Chen and Y. X. Zheng, The interaction of rarefaction waves of the two-dimensional Euler equations,, \emph{Indiana Univ. Math. J.}, 59 (2010), 231.  doi: 10.1512/iumj.2010.59.3752.  Google Scholar

[6]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves,, New York, (1948).   Google Scholar

[7]

R. Courant and D. Hilbert, Methodern der mathematischen Physik,, Vol.II. Springer, (1937).   Google Scholar

[8]

Z. H. Dai and T. Zhang, Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics,, \emph{Arch. Ration. Mech. Anal.}, 155 (2000), 277.  doi: 10.1007/s002050000113.  Google Scholar

[9]

L. H. Guo, W. C. Sheng and T. Zhang, The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system,, \emph{Commun. Pure Appl. Anal.}, 9 (2010), 431.  doi: 10.3934/cpaa.2010.9.431.  Google Scholar

[10]

Y. B. Hu, J. Q. Li and W. C. Sheng, Goursat-type boundary value problems arising from the study of two-dimensional isothermal Euler equations,, \emph{Z. angew Math. Phys.}, 63 (2012), 1021.  doi: 10.1007/s00033-012-0203-2.  Google Scholar

[11]

Y. B. Hu and W. C. Sheng, Characteristic decomposition of the 2$\times$2 quasilinear strictly hyperbolic systems,, \emph{Appl. Math. Lett.}, 25 (2012), 262.  doi: 10.1016/j.aml.2011.08.021.  Google Scholar

[12]

D. X. Kong, K. F. Liu and Y. Z. Wang, Global existence of smooth solutions to two-dimensional compressible isentropic Euler equations for Chaplygin gases,, \emph{Sci. China Math.}, 53 (2010), 719.  doi: 10.1007/s11425-010-0060-4.  Google Scholar

[13]

G. Lai, W. C. Sheng and Y. X. Zheng, Simple waves and pressure delta waves for a Chaplygin gas in multi-dimensions,, \emph{Discrete Contin. Dyn. Syst.}, 31 (2011), 489.  doi: 10.3934/dcds.2011.31.489.  Google Scholar

[14]

L. E. Levine, The expansion of a wedge of gas into a vacuum,, \emph{Proc. Camb. Philol. Soc.}, 64 (1968), 1151.   Google Scholar

[15]

J. Q. Li, On the two-dimensional gas expansion for compressible Euler equations,, \emph{SIAM J. Appl. Math.}, 62 (): 831.  doi: 10.1137/S0036139900361349.  Google Scholar

[16]

J. Q. Li, Global solution of an initial-value problem for two-dimesional compressible Euler equations,, \emph{J. Differential Equations}, 179 (2002), 178.  doi: 10.1006/jdeq.2001.4025.  Google Scholar

[17]

J. Q. Li, Z. C. Yang and Y. X. Zheng, Characteristic decompositions and interactions of rarefaction waves of 2-d Euler equations,, \emph{J. Differential Equations}, 250 (2011), 782.  doi: 10.1016/j.jde.2010.07.009.  Google Scholar

[18]

J. Q. Li, T. Zhang and Y. X. Zheng, Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations,, \emph{Commu. Math. Phys.}, 267 (2006), 1.  doi: 10.1007/s00220-006-0033-1.  Google Scholar

[19]

J. Q. Li and Y. Zheng, Interaction of rarefaction waves of the two-dimensional self-similar Euler equations,, \emph{Arch. Rational. Mech. Anal.}, 193 (2009), 623.  doi: 10.1007/s00205-008-0140-6.  Google Scholar

[20]

J. Q. Li and Y. X. Zheng, Interaction of four rarefaction waves in the bi-symmetric class of the two-dimensional Euler equations,, \emph{Commun. Math. Phys.}, 296 (2010), 303.  doi: 10.1007/s00220-010-1019-6.  Google Scholar

[21]

T. T. Li and W. C. Yu, Boundary value problems of quasilinear hyperbolic system,, Duke University Mathematics Series V, (1985).   Google Scholar

[22]

V. V. Meleshko and G. J. F. van Heijst, On Chaplygin's investigations of two-dimensional vortex structures in an inviscid fluid,, \emph{J. Fluid Mech.}, 272 (1994), 157.  doi: 10.1017/S0022112094004428.  Google Scholar

[23]

D. Serre, Multidimensional shock interaction for a Chaplygin gas,, \emph{Arch. Rational Mech. Anal.}, 191 (2009), 539.  doi: 10.1007/s00205-008-0110-z.  Google Scholar

[24]

V. A. Suchkov, Flow into a vacuum along an oblique wall,, \emph{J. Appl. Math. Mech.}, 27 (1963), 1132.   Google Scholar

[25]

G. D. Wang, B. C. Chen and Y. B. Hu, The two-dimensional Riemann problem for Chaplygin gas dynamics with three constant states,, \emph{J. Math. Anal. Appl.}, 393 (2012), 544.  doi: 10.1016/j.jmaa.2012.03.017.  Google Scholar

[26]

R. H. Wang and Z. Q. Wu, On mixed initial boundary value problem for quasi-linear hyperbolic system of partial differential equations in two independent variables (in Chinese),, \emph{Acta. Sci. Nat. Jilin. Univ.}, 2 (1963), 459.   Google Scholar

[27]

T. Zhang and Y. X. Zheng, Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems,, \emph{SIAM J. Math. Anal.}, 21 (1990), 593.  doi: 10.1137/0521032.  Google Scholar

[28]

W. X. Zhao, The expansion of gas from a wedge with small angle into a vaccum,, \emph{Comm. Pure Appl. Anal.}, 12 (2013), 2319.  doi: 10.3934/cpaa.2013.12.2319.  Google Scholar

[29]

Y. Zheng, The compressible Euler system in two space dimensions,, Nonlinear conservation laws, (2009), 301.  doi: 10.1142/9789814273282_0005.  Google Scholar

show all references

References:
[1]

T. Chang, G. Q. Chen and S. Yang, On the 2-D Riemann problem for the compressible Euler equations I. Interaction of shocks and rarefaction waves,, \emph{Discrete and Continuous Dynamical Systems}, 1 (1995), 555.  doi: 10.3934/dcds.1995.1.555.  Google Scholar

[2]

T. Chang, G. Q. Chen and S. Yang, On the 2-D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities,, \emph{Discrete and Continuous Dynamical Systems}, 6 (2000), 419.  doi: 10.3934/dcds.2000.6.419.  Google Scholar

[3]

T. Chang and L. Hsiao, The Riemann problem and interaction of waves in gas dynamics,, \emph{Pitman Monographs, 41 (1989), 95.   Google Scholar

[4]

S. X. Chen and A. F. Qu, Two-dimensional Riemann problems for Chaplygin gas,, \emph{SIAM J. Math. Anal.}, 44 (2012), 2146.  doi: 10.1137/110838091.  Google Scholar

[5]

X. Chen and Y. X. Zheng, The interaction of rarefaction waves of the two-dimensional Euler equations,, \emph{Indiana Univ. Math. J.}, 59 (2010), 231.  doi: 10.1512/iumj.2010.59.3752.  Google Scholar

[6]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves,, New York, (1948).   Google Scholar

[7]

R. Courant and D. Hilbert, Methodern der mathematischen Physik,, Vol.II. Springer, (1937).   Google Scholar

[8]

Z. H. Dai and T. Zhang, Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics,, \emph{Arch. Ration. Mech. Anal.}, 155 (2000), 277.  doi: 10.1007/s002050000113.  Google Scholar

[9]

L. H. Guo, W. C. Sheng and T. Zhang, The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system,, \emph{Commun. Pure Appl. Anal.}, 9 (2010), 431.  doi: 10.3934/cpaa.2010.9.431.  Google Scholar

[10]

Y. B. Hu, J. Q. Li and W. C. Sheng, Goursat-type boundary value problems arising from the study of two-dimensional isothermal Euler equations,, \emph{Z. angew Math. Phys.}, 63 (2012), 1021.  doi: 10.1007/s00033-012-0203-2.  Google Scholar

[11]

Y. B. Hu and W. C. Sheng, Characteristic decomposition of the 2$\times$2 quasilinear strictly hyperbolic systems,, \emph{Appl. Math. Lett.}, 25 (2012), 262.  doi: 10.1016/j.aml.2011.08.021.  Google Scholar

[12]

D. X. Kong, K. F. Liu and Y. Z. Wang, Global existence of smooth solutions to two-dimensional compressible isentropic Euler equations for Chaplygin gases,, \emph{Sci. China Math.}, 53 (2010), 719.  doi: 10.1007/s11425-010-0060-4.  Google Scholar

[13]

G. Lai, W. C. Sheng and Y. X. Zheng, Simple waves and pressure delta waves for a Chaplygin gas in multi-dimensions,, \emph{Discrete Contin. Dyn. Syst.}, 31 (2011), 489.  doi: 10.3934/dcds.2011.31.489.  Google Scholar

[14]

L. E. Levine, The expansion of a wedge of gas into a vacuum,, \emph{Proc. Camb. Philol. Soc.}, 64 (1968), 1151.   Google Scholar

[15]

J. Q. Li, On the two-dimensional gas expansion for compressible Euler equations,, \emph{SIAM J. Appl. Math.}, 62 (): 831.  doi: 10.1137/S0036139900361349.  Google Scholar

[16]

J. Q. Li, Global solution of an initial-value problem for two-dimesional compressible Euler equations,, \emph{J. Differential Equations}, 179 (2002), 178.  doi: 10.1006/jdeq.2001.4025.  Google Scholar

[17]

J. Q. Li, Z. C. Yang and Y. X. Zheng, Characteristic decompositions and interactions of rarefaction waves of 2-d Euler equations,, \emph{J. Differential Equations}, 250 (2011), 782.  doi: 10.1016/j.jde.2010.07.009.  Google Scholar

[18]

J. Q. Li, T. Zhang and Y. X. Zheng, Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations,, \emph{Commu. Math. Phys.}, 267 (2006), 1.  doi: 10.1007/s00220-006-0033-1.  Google Scholar

[19]

J. Q. Li and Y. Zheng, Interaction of rarefaction waves of the two-dimensional self-similar Euler equations,, \emph{Arch. Rational. Mech. Anal.}, 193 (2009), 623.  doi: 10.1007/s00205-008-0140-6.  Google Scholar

[20]

J. Q. Li and Y. X. Zheng, Interaction of four rarefaction waves in the bi-symmetric class of the two-dimensional Euler equations,, \emph{Commun. Math. Phys.}, 296 (2010), 303.  doi: 10.1007/s00220-010-1019-6.  Google Scholar

[21]

T. T. Li and W. C. Yu, Boundary value problems of quasilinear hyperbolic system,, Duke University Mathematics Series V, (1985).   Google Scholar

[22]

V. V. Meleshko and G. J. F. van Heijst, On Chaplygin's investigations of two-dimensional vortex structures in an inviscid fluid,, \emph{J. Fluid Mech.}, 272 (1994), 157.  doi: 10.1017/S0022112094004428.  Google Scholar

[23]

D. Serre, Multidimensional shock interaction for a Chaplygin gas,, \emph{Arch. Rational Mech. Anal.}, 191 (2009), 539.  doi: 10.1007/s00205-008-0110-z.  Google Scholar

[24]

V. A. Suchkov, Flow into a vacuum along an oblique wall,, \emph{J. Appl. Math. Mech.}, 27 (1963), 1132.   Google Scholar

[25]

G. D. Wang, B. C. Chen and Y. B. Hu, The two-dimensional Riemann problem for Chaplygin gas dynamics with three constant states,, \emph{J. Math. Anal. Appl.}, 393 (2012), 544.  doi: 10.1016/j.jmaa.2012.03.017.  Google Scholar

[26]

R. H. Wang and Z. Q. Wu, On mixed initial boundary value problem for quasi-linear hyperbolic system of partial differential equations in two independent variables (in Chinese),, \emph{Acta. Sci. Nat. Jilin. Univ.}, 2 (1963), 459.   Google Scholar

[27]

T. Zhang and Y. X. Zheng, Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems,, \emph{SIAM J. Math. Anal.}, 21 (1990), 593.  doi: 10.1137/0521032.  Google Scholar

[28]

W. X. Zhao, The expansion of gas from a wedge with small angle into a vaccum,, \emph{Comm. Pure Appl. Anal.}, 12 (2013), 2319.  doi: 10.3934/cpaa.2013.12.2319.  Google Scholar

[29]

Y. Zheng, The compressible Euler system in two space dimensions,, Nonlinear conservation laws, (2009), 301.  doi: 10.1142/9789814273282_0005.  Google Scholar

[1]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[2]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[3]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[4]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[5]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[6]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[7]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[8]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[9]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[12]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[13]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[14]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[15]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[16]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[17]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[18]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[19]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]