\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space

Abstract Related Papers Cited by
  • In this paper, we study the time-asymptotic behavior of the solution for the Cauchy problem of the damped wave equation with a nonlinear convection term in the multi-dimensional space. When the initial data is a small perturbation around a constant state $u^*$, we obtain the point-wise decay estimates of the solution under the so-called dissipative condition $|b| < 1$, where $b$ depends on $u^*$ and the nonlinear term.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. L. Fan, H. X. Liu and H. Yin, Dacay estimates of planar stationary waves for damped wave equations with nonlinear convection in mutil-dimensional half space, Acta Math Sci, 31(B) (2011), 1389-1410.doi: 10.1016/S0252-9602(11)60326-3.

    [2]

    T. Hosono and T. Ogawa, Large time behavior and $L^p-L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations, J. Differ. Equations, 203 (2004), 82-118.doi: 10.1016/j.jde.2004.03.034.

    [3]

    L. C. Evans, "Partial Differential Equations," Graduate in Math., 19, Amer. Math. Soc., Providence, RI, 1998.

    [4]

    T. Li and Y. M. Chen, "Global Classical Solutions for Nonlinear Evolution Equations," Pitman Monogr. Surv. Pure Appl. Math., vol. 45, Longman Scientific and Technical, Harlow, 1992.

    [5]

    T. P. Liu, Pointwise convergence to shock waves for viscous conservation laws, Comm. Pure Appl. Math, 50 (1997), 1113-1182.doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.3.CO;2-8.

    [6]

    T. P. Liu and W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimensions, Comm. Math. Phys., 169 (1998), 145-173.doi: 10.1007/s002200050418.

    [7]

    T. P. Liu and Y. Zeng, Large time behavior of solutions general quasilinear hyperbolic-parabolic systems of conservation laws, A. M. S. memoirs, 599 (1997).

    [8]

    Y. Q. Liu, The point-wise estimates of solutions for semi-linear dissipative wave equation, Comm. Pure Appl. Anal., 12 (2013), 237-252.doi: 10.3934/cpaa.2013.12.237.

    [9]

    Y. Q. Liu and W. K. Wang, The pointwise estimates of solutions for dissipative wave equation in multi-dimensions, Discrete Contin. Dyn. Syst., 20 (2008), 1013-1028.doi: 10.3934/dcds.2008.20.1013.

    [10]

    M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semiliear dissipative wave equation, Math. Z., 214 (1993), 325-241.doi: 10.1007/BF02572407.

    [11]

    K. Nishihara, Global asymptotics for the damped wace equation with absotption in higher dimensional space, J. Math. Soc., Japan, 58 (2006), 805-836.

    [12]

    K. Nishihara and H. J. Zhao, Dacay properties of solutions to the Cauchy problem for the damped wace equation with absorption, J. Math. Anal. Appl., 313 (2006), 698-610.doi: 10.1016/j.jmaa.2005.08.059.

    [13]

    K. Ono, Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations, Discrete Contin. Dyn. Syst., 9 (2003), 651-662.doi: 10.3934/dcds.2003.9.651.

    [14]

    R. Ikehata, A remark on a critical exponent for the semilinear dissipative wave equation in the one dimensional half space, Differential Integral Equations, 16 (2003), 727-736.

    [15]

    R. Ikehata, K. Nishihara and H. J. Zhao, Global asymptotics of solutions to the Cauchy problem for the damped wave equation with absorption, J. Differ. Equation, 226 (2006), 1-29.doi: 10.1016/j.jde.2006.01.002.

    [16]

    S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term, J. Math. Soc. Japan, 47 (1995), 617-653.doi: 10.2969/jmsj/04740617.

    [17]

    Y. Ueda, Asymptotic stability of stationary waves for damped wave equations with a nonlinear convection term, Adv. Math. Sci. Appl., 18, (2008), 329-343.

    [18]

    Y. Ueda, T. Nakamura and S. Kawashima, Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space, Kinet. Relat. Models, 1 (2008), 49-64.doi: 10.3934/krm.2008.1.49.

    [19]

    W. K. Wang and W. J. Wang, The pointwise estimates of solutions for semilinear dissipative wave equation in multi-dimensions, J. Math. Anal. Appl., 366 (2010), 226-241.doi: 10.1016/j.jmaa.2009.12.013.

    [20]

    W. K. Wang and T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions, J. Differ. Equations, 173 (2001), 410-450.doi: 10.1006/jdeq.2000.3937.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(62) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return