Advanced Search
Article Contents
Article Contents

Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations

Abstract Related Papers Cited by
  • Extending previuos results ([16, 1, 7]), we study the vanishing viscosity limit of solutions of space-time periodic Hamilton-Jacobi-Belllman equations, assuming that the ``Aubry set'' is the union of a finite number of hyperbolic periodic orbits of the Hamiltonian flow.
    Mathematics Subject Classification: Primary: 37J50, 49L25; Secondary: 70H20.


    \begin{equation} \\ \end{equation}
  • [1]

    N. Anantharaman, R. Iturriaga, P. Padilla and H. Sánchez-Morgado, Physical solutions of the Hamilton-Jacobi equation, Disc. Cont. Dyn. Sys. Series B, 5 (2005), 513-528.doi: 10.3934/dcdsb.2005.5.513.


    M. Bardi, I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,'' Birkhausser, 1997.


    G. Barles, "Solutions de viscosité des équations de Hamilton Jacobi,'' Mathématiques et Applications 17, Springer-Verlag, 1994.


    G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations, SIAM J. Math. Anal., 32 (2001), 1311-1323.doi: 10.1137/S0036141000369344.


    P. Bernard, Smooth critical subsolutions of the Hamilton-Jacobi equation, Math. Res. Lett., 14 (2007), 503-511.


    P. Bernard, Connecting orbits of time dependent Lagrangian systems, Ann. Inst. Fourier, Grenoble, 52 (2002), 1533-1568.doi: 10.5802/aif.1924.


    U. Bessi, Aubry-Mather theory and Hamilton-Jacobi equations, Comm. Math. Phys., 235 (2003), 495-511.doi: 10.1007/s00220-002-0781-5.


    G. Contreras and R. Iturriaga, Convex Hamiltonians without conjugate points, Erg. Th. Dynam. Sys., 19 (1999), 901-952.doi: 10.1017/S014338579913387X.


    G. Contreras, R. Iturriaga and H. Sánchez-MorgadoWeak solutions of the Hamilton Jacobi equation for Time Periodic Lagrangians, http://www.matem.unam.mx/hector/wham.pdf, Preprint.


    M. G. Crandall, L. C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282 (1984), 487-502.doi: 10.1090/S0002-9947-1984-0732102-X.


    L. C. Evans, "Partial Differential Equations,'' Graduate Studies in Mathematics 19, AMS, 1997.


    A. Fathi, "Weak KAM Theorem in Lagrangian Dynamics,'' To appear in Cambridge Studies in Advanced Mathematics.


    A. Fathi, On existence of smooth critical subsolutions of the Hamilton-Jacobi equation, Pub. Mat. Uruguay, 12 (2011), 87-98.


    W. Fleming and M. Soner, "Controlled Markov Processes and Viscosity Solutions,'' Springer 1993.


    M. I. Freidlin and A. D. Wentzell, "Random Perturbations of Dynamical Systems,'' Springer 1998.


    H. R. Jauslin, H. O. Kreiss and J. Moser, On the forced Burgers equation with periodic boundary conditions, "Differential Equations, La Pietra,'' Proc. of Symp. Pure Math., 65 (1996), 133-153.


    D. Massart, Subsolution of time-periodic Hamilton-Jacobi equations, Erg. Th. Dynam. Sys., 27 (2007), 1253-1265.doi: 10.1017/S0143385707000089.


    T. Rockafellar, "Convex Analysis,'' Princeton University Press, 1972.

  • 加载中

Article Metrics

HTML views() PDF downloads(54) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint