-
Previous Article
A viscoplastic contact problem with a normal compliance with limited penetration condition and history-dependent stiffness coefficient
- CPAA Home
- This Issue
-
Next Article
Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations
Spatiotemporal patterns of a homogeneous diffusive system modeling hair growth: Global asymptotic behavior and multiple bifurcation analysis
1. | Center for Partial Differential Equations, East China Normal University, Minhang, 200241, Shanghai, China |
2. | Department of Applied Mathematics, Harbin Engineering University, Harbin, 150001, Heilongjiang, China, China |
3. | Centre for Mathematical Biology, Mathematical Institute, University of Oxford, St Giles 24-29, OX1 3LB, United Kingdom |
References:
[1] |
R. A. Barrio, R. E. Baker, B. Vaughan, K. Tribuzy, M. R. de Carvalho, R. Bassanezi and P. K. Maini, Modelling the skin pattern of fishes,, Phys. Rev. E., 79 (2009).
doi: 10.1103/PhysRevE.79.031908. |
[2] |
R. E. Baker, S. Schnell and P. K. Maini, A mathematical investigation of a new model for somitogenesis,, J. Math. Biol., 52 (2006), 458.
doi: 10.1007/s00285-005-0362-2. |
[3] |
R. E. Baker, S. Schnell, S. and P. K. Maini, A clock and wavefront mechanism for somite formation,, Dev. Biol., 293 (2006), 116.
doi: 10.1016/j.ydbio.2006.01.018. |
[4] |
A. Gierer and H. Meinhardt, A theory of biological pattern formation,, Kybernetik, 12 (1972), 30.
doi: 10.1007/BF00289234. |
[5] |
E. A. Gaffney, K. Pugh, P. K. Maini and F. Arnold, Investigating a simple model of cutaneous wound healing angiogenesis,, J. Math. Biol., 45 (2002), 337.
doi: 10.1007/s002850200161. |
[6] |
B. D. Hassard, N. D. Kazarinoff and Y. Wan, "Theory and Application of Hopf Bifurcation,", Cambridge Univ. Press, (1981). Google Scholar |
[7] |
S. Kondo and R. Asai, A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus,, Nature, 376 (2002), 765.
doi: 10.1038/376765a0. |
[8] |
P. De Kepper, V. Castets, E. Dulos and J. Boissonade, Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction,, Physica D., 49 (1991), 161.
doi: 10.1016/0167-2789(91)90204-M. |
[9] |
S. A. Kauffman, R. M. Shymko and K. Trabert, Control of sequential compartment formation in drosophila,, Science, 199 (1978), 259.
doi: 10.1126/science.413193. |
[10] |
I. Lengyel and I. R. Epstein, Modeling of Turing structure in the Chloride-iodide-malonic acid-starch reaction system,, Science, 251 (1991).
doi: 10.1126/science.251.4994.650. |
[11] |
I. Lengyel and I. R. Epstein, A chemical approach to designing Turing patterns in reaction-diffusion systems,, Proc. Natl. Acad. Sci., 89 (1992), 3977.
doi: 10.1073/pnas.89.9.3977. |
[12] |
C.-M. Lin, T.-X. Jiang, R. E. Baker, P. K. Maini, R. B. Widelitz and C.-M. Chuong, Spots versus stripes: FGF/ERK signalling and mesenchymal condensation during feather pattern formation,, Dev. Biol., 334 (2009), 369.
doi: 10.1016/j.ydbio.2009.07.036. |
[13] |
P. Liu, J. Shi and Y. Wang, Imperfect transcritical and pitchfork bifurcations,, J. Funct. Anal., 251 (2007), 573.
doi: 10.1016/j.jfa.2007.06.015. |
[14] |
P. Liu, J. Shi and Y. Wang, Bifurcation from a degenerate simple eigenvalue,, J. Funct. Anal., 264 (2013), 2269.
doi: http://dx.doi.org/10.1016/j.jfa.2013.02.009. |
[15] |
S. S. Liaw, C. C. Yang, R. T. Liu and J. T. Hong, Turing model for the patterns of lady beetles,, Phys. Rev., 64 (2001). Google Scholar |
[16] |
J. R. Mooney, Steady states of a reaction-diffusion system on the off-centre annulus,, SIAM J. Appl. Math., 44 (1984), 745.
doi: 10.1137/0144053. |
[17] |
J. D. Murray, "Mathematical Biology,", Springer-Verlag, (1989).
doi: 10.1007/978-3-662-08539-4. |
[18] |
P. K. Maini, R. E. Baker and C. M. Chuong, The Turing model comes of molecular age,, Science, 314 (2006), 397.
doi: 10.1126/science.1136396. |
[19] |
D.G. Miguez, M. Dolnik, A. P. Munuzuri and L. Kramer, Effect of axial growth on Turing pattern formation,, Phys. Rev. L., 96 (2006).
doi: 10.1103/PhysRevLett.96.048304. |
[20] |
S. McDougall, J. Dallon, J. A. Sherratt and P. K. Maini, Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications,, Phil. Trans. Roy. Soc., A 364 (2006), 1385.
|
[21] |
P. K. Maini, D. S. L. McElwain and S. Leavesley, Travelling waves in a wound healing assay,, Appl. Math. Lett., 17 (2004), 575.
doi: 10.1016/S0893-9659(04)90128-0. |
[22] |
H. Meinhardt, P. Prusinkiewicz and D. R. Fowler, "The Algorithmic Beauty of Sea Shells,", Springer Verlag, (2003).
doi: 10.1007/978-3-662-05291-4. |
[23] |
P. De Mottoni and F. Rothe, Convergence to homogeneous equilibrium state for generalized Volterra-Lotka systems with diffusion,, SIAM J. Appl. Math., 37 (1979), 648.
doi: 10.1137/0137048. |
[24] |
B. N. Nagorcka, Evidence for a reaction-diffusion system as a mechanism controlling mammalian hair growth,, BioSystems, (1984), 323. Google Scholar |
[25] |
B. N. Nagorcka and J. R. Mooney, The role of a reaction-diffusion system in the formation of hair fibres,, J. Theor. Biol., 98 (1982), 5757.
doi: 10.1016/0022-5193(82)90139-4. |
[26] |
W. Ni and M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reaction,, Tran. Amer. Math. Soc., 357 (2005), 3953.
doi: 10.1090/S0002-9947-05-04010-9. |
[27] |
A. Okubo, "Diffusion and Ecological Problems: Mathematical Models,", Springer-Verlag, (1980). Google Scholar |
[28] |
M. V. Plikus, D. De La Cruz, J. Mayer, R. E. Baker, R. Maxon, P. K. Maini and C.-M. Chuong, Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration,, Nature, 451 (2008), 340.
doi: 10.1038/nature06457. |
[29] |
R. Peng, F. Yi and X. Zhao, Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme,, Jour. Diff. Equa., 254 (2013), 2465.
doi: 10.1016/j.jde.2012.12.009. |
[30] |
S. Ruan, Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis,, Natural Resource Modelling, 11 (1998), 131.
|
[31] |
S. Ruan, Turing instability and travelling waves in diffusive plankton models with delayed nutrient recycling,, IMA J. Appl. Math., 60 (1998), 15.
doi: 10.1093/imamat/61.1.15. |
[32] |
M. B. Short et al, A statistical model of criminal behavior,, Math. Models Method. in Appl. Sci., 18 (2008), 1249.
doi: 10.1142/S0218202508003029. |
[33] |
M. B. Short et al, Dissipation and displacement of hotspots in reaction-diffusion models of crime,, Proc. Nat. Acad. Sci., 107 (2010), 3961.
doi: 10.1073/pnas.0910921107. |
[34] |
S. Sick, S. Reinker, J. Timmer and T. Schlake, WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism,, Science, 314 (2006), 1447.
doi: 10.1126/science.1130088. |
[35] |
J. Shi and X. Wang, On global bifurcation for quasilinear elliptic system on bounded domains,, Jour. Diff. Equa., 246 (2009), 2788.
doi: 10.1016/j.jde.2008.09.009. |
[36] |
M. J. Tindall, S. L. Porter, P. K. Maini, G. Gaglia and J. P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell,, Bull. Math. Biol., 70 (2008), 1525.
doi: 10.1007/s11538-008-9322-5. |
[37] |
M. J. Tindall, S. L. Porter, P. K. Maini, G. Gaglia and J. P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis II: the single cell,, Bull. Math. Biol., 70 (2008), 1570.
doi: 10.1007/s11538-008-9322-5. |
[38] |
A. M. Turing, The chemical basis of morphoegenesis,, Phil. Tans. R. Soc. London, 237 (1952), 37. Google Scholar |
[39] |
J. Wang, J. Shi and J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey,, Jour. Diff. Equa., 25 (2011), 1276.
doi: 10.1016/j.jde.2011.03.004. |
[40] |
J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey,, J. Math. Biol., 3 (2011), 291.
doi: 10.1007/s00285-010-0332-1. |
[41] |
F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogenous diffusive predator-prey system,, Jour. Diff. Equa., 246 (2009), 1944.
doi: 10.1016/j.jde.2008.10.024. |
[42] |
F. Yi, J. Wei and J. Shi, Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system,, Appl. Math. Lett., 22 (2009), 52.
doi: 10.1016/j.aml.2008.02.003. |
show all references
References:
[1] |
R. A. Barrio, R. E. Baker, B. Vaughan, K. Tribuzy, M. R. de Carvalho, R. Bassanezi and P. K. Maini, Modelling the skin pattern of fishes,, Phys. Rev. E., 79 (2009).
doi: 10.1103/PhysRevE.79.031908. |
[2] |
R. E. Baker, S. Schnell and P. K. Maini, A mathematical investigation of a new model for somitogenesis,, J. Math. Biol., 52 (2006), 458.
doi: 10.1007/s00285-005-0362-2. |
[3] |
R. E. Baker, S. Schnell, S. and P. K. Maini, A clock and wavefront mechanism for somite formation,, Dev. Biol., 293 (2006), 116.
doi: 10.1016/j.ydbio.2006.01.018. |
[4] |
A. Gierer and H. Meinhardt, A theory of biological pattern formation,, Kybernetik, 12 (1972), 30.
doi: 10.1007/BF00289234. |
[5] |
E. A. Gaffney, K. Pugh, P. K. Maini and F. Arnold, Investigating a simple model of cutaneous wound healing angiogenesis,, J. Math. Biol., 45 (2002), 337.
doi: 10.1007/s002850200161. |
[6] |
B. D. Hassard, N. D. Kazarinoff and Y. Wan, "Theory and Application of Hopf Bifurcation,", Cambridge Univ. Press, (1981). Google Scholar |
[7] |
S. Kondo and R. Asai, A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus,, Nature, 376 (2002), 765.
doi: 10.1038/376765a0. |
[8] |
P. De Kepper, V. Castets, E. Dulos and J. Boissonade, Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction,, Physica D., 49 (1991), 161.
doi: 10.1016/0167-2789(91)90204-M. |
[9] |
S. A. Kauffman, R. M. Shymko and K. Trabert, Control of sequential compartment formation in drosophila,, Science, 199 (1978), 259.
doi: 10.1126/science.413193. |
[10] |
I. Lengyel and I. R. Epstein, Modeling of Turing structure in the Chloride-iodide-malonic acid-starch reaction system,, Science, 251 (1991).
doi: 10.1126/science.251.4994.650. |
[11] |
I. Lengyel and I. R. Epstein, A chemical approach to designing Turing patterns in reaction-diffusion systems,, Proc. Natl. Acad. Sci., 89 (1992), 3977.
doi: 10.1073/pnas.89.9.3977. |
[12] |
C.-M. Lin, T.-X. Jiang, R. E. Baker, P. K. Maini, R. B. Widelitz and C.-M. Chuong, Spots versus stripes: FGF/ERK signalling and mesenchymal condensation during feather pattern formation,, Dev. Biol., 334 (2009), 369.
doi: 10.1016/j.ydbio.2009.07.036. |
[13] |
P. Liu, J. Shi and Y. Wang, Imperfect transcritical and pitchfork bifurcations,, J. Funct. Anal., 251 (2007), 573.
doi: 10.1016/j.jfa.2007.06.015. |
[14] |
P. Liu, J. Shi and Y. Wang, Bifurcation from a degenerate simple eigenvalue,, J. Funct. Anal., 264 (2013), 2269.
doi: http://dx.doi.org/10.1016/j.jfa.2013.02.009. |
[15] |
S. S. Liaw, C. C. Yang, R. T. Liu and J. T. Hong, Turing model for the patterns of lady beetles,, Phys. Rev., 64 (2001). Google Scholar |
[16] |
J. R. Mooney, Steady states of a reaction-diffusion system on the off-centre annulus,, SIAM J. Appl. Math., 44 (1984), 745.
doi: 10.1137/0144053. |
[17] |
J. D. Murray, "Mathematical Biology,", Springer-Verlag, (1989).
doi: 10.1007/978-3-662-08539-4. |
[18] |
P. K. Maini, R. E. Baker and C. M. Chuong, The Turing model comes of molecular age,, Science, 314 (2006), 397.
doi: 10.1126/science.1136396. |
[19] |
D.G. Miguez, M. Dolnik, A. P. Munuzuri and L. Kramer, Effect of axial growth on Turing pattern formation,, Phys. Rev. L., 96 (2006).
doi: 10.1103/PhysRevLett.96.048304. |
[20] |
S. McDougall, J. Dallon, J. A. Sherratt and P. K. Maini, Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications,, Phil. Trans. Roy. Soc., A 364 (2006), 1385.
|
[21] |
P. K. Maini, D. S. L. McElwain and S. Leavesley, Travelling waves in a wound healing assay,, Appl. Math. Lett., 17 (2004), 575.
doi: 10.1016/S0893-9659(04)90128-0. |
[22] |
H. Meinhardt, P. Prusinkiewicz and D. R. Fowler, "The Algorithmic Beauty of Sea Shells,", Springer Verlag, (2003).
doi: 10.1007/978-3-662-05291-4. |
[23] |
P. De Mottoni and F. Rothe, Convergence to homogeneous equilibrium state for generalized Volterra-Lotka systems with diffusion,, SIAM J. Appl. Math., 37 (1979), 648.
doi: 10.1137/0137048. |
[24] |
B. N. Nagorcka, Evidence for a reaction-diffusion system as a mechanism controlling mammalian hair growth,, BioSystems, (1984), 323. Google Scholar |
[25] |
B. N. Nagorcka and J. R. Mooney, The role of a reaction-diffusion system in the formation of hair fibres,, J. Theor. Biol., 98 (1982), 5757.
doi: 10.1016/0022-5193(82)90139-4. |
[26] |
W. Ni and M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reaction,, Tran. Amer. Math. Soc., 357 (2005), 3953.
doi: 10.1090/S0002-9947-05-04010-9. |
[27] |
A. Okubo, "Diffusion and Ecological Problems: Mathematical Models,", Springer-Verlag, (1980). Google Scholar |
[28] |
M. V. Plikus, D. De La Cruz, J. Mayer, R. E. Baker, R. Maxon, P. K. Maini and C.-M. Chuong, Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration,, Nature, 451 (2008), 340.
doi: 10.1038/nature06457. |
[29] |
R. Peng, F. Yi and X. Zhao, Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme,, Jour. Diff. Equa., 254 (2013), 2465.
doi: 10.1016/j.jde.2012.12.009. |
[30] |
S. Ruan, Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis,, Natural Resource Modelling, 11 (1998), 131.
|
[31] |
S. Ruan, Turing instability and travelling waves in diffusive plankton models with delayed nutrient recycling,, IMA J. Appl. Math., 60 (1998), 15.
doi: 10.1093/imamat/61.1.15. |
[32] |
M. B. Short et al, A statistical model of criminal behavior,, Math. Models Method. in Appl. Sci., 18 (2008), 1249.
doi: 10.1142/S0218202508003029. |
[33] |
M. B. Short et al, Dissipation and displacement of hotspots in reaction-diffusion models of crime,, Proc. Nat. Acad. Sci., 107 (2010), 3961.
doi: 10.1073/pnas.0910921107. |
[34] |
S. Sick, S. Reinker, J. Timmer and T. Schlake, WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism,, Science, 314 (2006), 1447.
doi: 10.1126/science.1130088. |
[35] |
J. Shi and X. Wang, On global bifurcation for quasilinear elliptic system on bounded domains,, Jour. Diff. Equa., 246 (2009), 2788.
doi: 10.1016/j.jde.2008.09.009. |
[36] |
M. J. Tindall, S. L. Porter, P. K. Maini, G. Gaglia and J. P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell,, Bull. Math. Biol., 70 (2008), 1525.
doi: 10.1007/s11538-008-9322-5. |
[37] |
M. J. Tindall, S. L. Porter, P. K. Maini, G. Gaglia and J. P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis II: the single cell,, Bull. Math. Biol., 70 (2008), 1570.
doi: 10.1007/s11538-008-9322-5. |
[38] |
A. M. Turing, The chemical basis of morphoegenesis,, Phil. Tans. R. Soc. London, 237 (1952), 37. Google Scholar |
[39] |
J. Wang, J. Shi and J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey,, Jour. Diff. Equa., 25 (2011), 1276.
doi: 10.1016/j.jde.2011.03.004. |
[40] |
J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey,, J. Math. Biol., 3 (2011), 291.
doi: 10.1007/s00285-010-0332-1. |
[41] |
F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogenous diffusive predator-prey system,, Jour. Diff. Equa., 246 (2009), 1944.
doi: 10.1016/j.jde.2008.10.024. |
[42] |
F. Yi, J. Wei and J. Shi, Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system,, Appl. Math. Lett., 22 (2009), 52.
doi: 10.1016/j.aml.2008.02.003. |
[1] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[2] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[3] |
Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109 |
[4] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[5] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[6] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[7] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[8] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[9] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[10] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[11] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[12] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[13] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[14] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[15] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[16] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[17] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[18] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[19] |
Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209 |
[20] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]