-
Previous Article
Polynomial-in-time upper bounds for the orbital instability of subcritical generalized Korteweg-de Vries equations
- CPAA Home
- This Issue
-
Next Article
Spatiotemporal patterns of a homogeneous diffusive system modeling hair growth: Global asymptotic behavior and multiple bifurcation analysis
A viscoplastic contact problem with a normal compliance with limited penetration condition and history-dependent stiffness coefficient
1. | Laboratoire de Mathématiques et Physique pour les Systèmes, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan |
2. | Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309 |
References:
[1] |
M. Barboteu, A. Matei and M. Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance,, Quarterly Journal of Mechanics and Applied Mathematics, 65 (2012), 555. Google Scholar |
[2] |
M. Barboteu, A. Matei and M. Sofonea, On the behaviours of the solution of a viscoplastic contact problem,, Quarterly of Applied Mathematics, (). Google Scholar |
[3] |
N. Cristescu and I. Suliciu, "Viscoplasticity,", Martinus Nijhoff Publishers, (1982). Google Scholar |
[4] |
G. Duvaut and J.-L. Lions, "Inequalities in Mechanics and Physics,", Springer-Verlag, (1976). Google Scholar |
[5] |
C. Eck, J. Jarušek and M. Krbeč, "Unilateral Contact, Problems: Variational Methods and Existence Theorems, 270 (2005). Google Scholar |
[6] |
J. Jarušek and M. Sofonea, On the solvability of dynamic elastic-visco-plastic contact problems,, Zeitschrift f\, 88 (2008), 3. Google Scholar |
[7] |
A. Klarbring, A. Mikelic and M. Shillor, Frictional contact problems with normal compliance,, Int. J. Engng. Sci., 26 (1988), 811. Google Scholar |
[8] |
A. Klarbring, A. Mikelic and M. Shillor, On friction problems with normal compliance,, Nonlinear Analysis, 13 (1989), 935. Google Scholar |
[9] |
T. Laursen, "Computational Contact and Impact Mechanics,", Springer, (2002). Google Scholar |
[10] |
J. A. C. Martins and J. T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws,, Nonlinear Analysis TMA, 11 (1987), 407. Google Scholar |
[11] |
J. T. Oden and J. A. C. Martins, Models and computational methods for dynamic friction phenomena,, Computer Methods in Applied Mechanics and Engineering, 52 (1985), 527. Google Scholar |
[12] |
J. Piotrowski, Smoothing dry friction damping by dither generated in rolling contact of wheel and rail and its influence on ride dynamics of freight wagons,, Vehicle System Dynamics, 48 (2010), 675.
doi: 10.1080/00423110903126478. |
[13] |
M. Shillor, M. Sofonea and J. Telega, "Models and Variational Analysis of Quasistatic Contact,", Lecture Notes in Physics {\bf655}, (2004).
doi: 10.1007/b99799. |
[14] |
M. Sofonea and A. Matei, A mixed variational formulation for the Signorini frictionless problem in viscoplasticity,, Annals Univ. Ovidius Constanta, 12 (2004), 157. Google Scholar |
[15] |
M. Sofonea and A. Matei, "Mathematical Models in Contact Mechanics,", London Mathematical Society Lecture Note Series {\bf 398}, 398 (2012).
doi: 10.1017/CBO9781139104166. |
[16] |
P. Wriggers, "Computational Contact Mechanics,", Wiley, (2002).
doi: PMCid:PMC123642. |
show all references
References:
[1] |
M. Barboteu, A. Matei and M. Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance,, Quarterly Journal of Mechanics and Applied Mathematics, 65 (2012), 555. Google Scholar |
[2] |
M. Barboteu, A. Matei and M. Sofonea, On the behaviours of the solution of a viscoplastic contact problem,, Quarterly of Applied Mathematics, (). Google Scholar |
[3] |
N. Cristescu and I. Suliciu, "Viscoplasticity,", Martinus Nijhoff Publishers, (1982). Google Scholar |
[4] |
G. Duvaut and J.-L. Lions, "Inequalities in Mechanics and Physics,", Springer-Verlag, (1976). Google Scholar |
[5] |
C. Eck, J. Jarušek and M. Krbeč, "Unilateral Contact, Problems: Variational Methods and Existence Theorems, 270 (2005). Google Scholar |
[6] |
J. Jarušek and M. Sofonea, On the solvability of dynamic elastic-visco-plastic contact problems,, Zeitschrift f\, 88 (2008), 3. Google Scholar |
[7] |
A. Klarbring, A. Mikelic and M. Shillor, Frictional contact problems with normal compliance,, Int. J. Engng. Sci., 26 (1988), 811. Google Scholar |
[8] |
A. Klarbring, A. Mikelic and M. Shillor, On friction problems with normal compliance,, Nonlinear Analysis, 13 (1989), 935. Google Scholar |
[9] |
T. Laursen, "Computational Contact and Impact Mechanics,", Springer, (2002). Google Scholar |
[10] |
J. A. C. Martins and J. T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws,, Nonlinear Analysis TMA, 11 (1987), 407. Google Scholar |
[11] |
J. T. Oden and J. A. C. Martins, Models and computational methods for dynamic friction phenomena,, Computer Methods in Applied Mechanics and Engineering, 52 (1985), 527. Google Scholar |
[12] |
J. Piotrowski, Smoothing dry friction damping by dither generated in rolling contact of wheel and rail and its influence on ride dynamics of freight wagons,, Vehicle System Dynamics, 48 (2010), 675.
doi: 10.1080/00423110903126478. |
[13] |
M. Shillor, M. Sofonea and J. Telega, "Models and Variational Analysis of Quasistatic Contact,", Lecture Notes in Physics {\bf655}, (2004).
doi: 10.1007/b99799. |
[14] |
M. Sofonea and A. Matei, A mixed variational formulation for the Signorini frictionless problem in viscoplasticity,, Annals Univ. Ovidius Constanta, 12 (2004), 157. Google Scholar |
[15] |
M. Sofonea and A. Matei, "Mathematical Models in Contact Mechanics,", London Mathematical Society Lecture Note Series {\bf 398}, 398 (2012).
doi: 10.1017/CBO9781139104166. |
[16] |
P. Wriggers, "Computational Contact Mechanics,", Wiley, (2002).
doi: PMCid:PMC123642. |
[1] |
Xiaoliang Cheng, Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of two quasistatic history-dependent contact models. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2425-2445. doi: 10.3934/dcdsb.2014.19.2425 |
[2] |
C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519 |
[3] |
S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155 |
[4] |
María Teresa Cao-Rial, Peregrina Quintela, Carlos Moreno. Numerical solution of a time-dependent Signorini contact problem. Conference Publications, 2007, 2007 (Special) : 201-211. doi: 10.3934/proc.2007.2007.201 |
[5] |
Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 621-630. doi: 10.3934/jimo.2013.9.621 |
[6] |
Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure & Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645 |
[7] |
Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191 |
[8] |
Takeshi Fukao, Nobuyuki Kenmochi. Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2523-2538. doi: 10.3934/dcds.2015.35.2523 |
[9] |
Zaiyun Peng, Xinmin Yang, Kok Lay Teo. On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality. Journal of Industrial & Management Optimization, 2015, 11 (2) : 549-562. doi: 10.3934/jimo.2015.11.549 |
[10] |
Mei Wang, Zilai Li, Zhenhua Guo. Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 1-24. doi: 10.3934/cpaa.2017001 |
[11] |
Guangwu Wang, Boling Guo. Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6141-6166. doi: 10.3934/dcdsb.2019133 |
[12] |
Yalin Zhang, Guoliang Shi. Continuous dependence of the transmission eigenvalues in one dimension. Inverse Problems & Imaging, 2015, 9 (1) : 273-287. doi: 10.3934/ipi.2015.9.273 |
[13] |
Jiří Benedikt. Continuous dependence of eigenvalues of $p$-biharmonic problems on $p$. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1469-1486. doi: 10.3934/cpaa.2013.12.1469 |
[14] |
Giuseppe Maria Coclite, Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Continuous dependence in hyperbolic problems with Wentzell boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (1) : 419-433. doi: 10.3934/cpaa.2014.13.419 |
[15] |
Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437 |
[16] |
P. De Maesschalck. Gevrey normal forms for nilpotent contact points of order two. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 677-688. doi: 10.3934/dcds.2014.34.677 |
[17] |
Stanislaw Migórski. Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1339-1356. doi: 10.3934/dcdsb.2006.6.1339 |
[18] |
Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557 |
[19] |
Pavel Krejčí, Thomas Roche. Lipschitz continuous data dependence of sweeping processes in BV spaces. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 637-650. doi: 10.3934/dcdsb.2011.15.637 |
[20] |
Ramon Quintanilla. Structural stability and continuous dependence of solutions of thermoelasticity of type III. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 463-470. doi: 10.3934/dcdsb.2001.1.463 |
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]