• Previous Article
    Geometric conditions for the existence of a rolling without twisting or slipping
  • CPAA Home
  • This Issue
  • Next Article
    Polynomial-in-time upper bounds for the orbital instability of subcritical generalized Korteweg-de Vries equations
January  2014, 13(1): 419-433. doi: 10.3934/cpaa.2014.13.419

Continuous dependence in hyperbolic problems with Wentzell boundary conditions

1. 

Department of Mathematics, University of Bari, Via E. Orabona 4, I--70125 Bari, Italy, Italy

2. 

Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna

3. 

The University of Memphis, Department of Mathematical Sciences, Memphis, TN 38152, United States

4. 

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, United States

Received  January 2013 Revised  May 2013 Published  August 2013

Let $\Omega$ be a smooth bounded domain in $R^N$ and let \begin{eqnarray} Lu=\sum_{j,k=1}^N \partial_{x_j}\left(a_{jk}(x)\partial_{x_k} u\right), \end{eqnarray} in $\Omega$ and \begin{eqnarray} Lu+\beta(x)\sum\limits_{j,k=1}^N a_{jk}(x)\partial_{x_j} u n_k+\gamma (x)u-q\beta(x)\sum_{j,k=1}^{N-1}\partial_{\tau_k}\left(b_{jk}(x)\partial_{\tau_j}u\right)=0, \end{eqnarray} on $\partial\Omega$ define a generalized Laplacian on $\Omega$ with a Wentzell boundary condition involving a generalized Laplace-Beltrami operator on the boundary. Under some smoothness and positivity conditions on the coefficients, this defines a nonpositive selfadjoint operator, $-S^2$, on a suitable Hilbert space. If we have a sequence of such operators $S_0,S_1,S_2,...$ with corresponding coefficients \begin{eqnarray} \Phi_n=(a_{jk}^{(n)},b_{jk}^{(n)}, \beta_n,\gamma_n,q_n) \end{eqnarray} satisfying $\Phi_n\to\Phi_0$ uniformly as $n\to\infty$, then $u_n(t)\to u_0(t)$ where $u_n$ satisfies \begin{eqnarray} i\frac{du_n}{dt}=S_n^m u_n, \end{eqnarray} or \begin{eqnarray} \frac{d^2u_n}{dt^2}+S_n^{2m} u_n=0, \end{eqnarray} or \begin{eqnarray} \frac{d^2u_n}{dt^2}+F(S_n)\frac{du_n}{dt}+S_n^{2m} u_n=0, \end{eqnarray} for $m=1,2,$ initial conditions independent of $n$, and for certain nonnegative functions $F$. This includes Schrödinger equations, damped and undamped wave equations, and telegraph equations.
Citation: Giuseppe Maria Coclite, Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Continuous dependence in hyperbolic problems with Wentzell boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (1) : 419-433. doi: 10.3934/cpaa.2014.13.419
References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I,, Comm. Pure Appl. Math., 12 (1959), 623.  doi: 10.1002/cpa.3160120405.  Google Scholar

[2]

S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space,, Comm. Pure Appl. Math., 16 (1963), 121.  doi: 10.1002/cpa.3160160204.  Google Scholar

[3]

G. M. Coclite, A Favini, C. G. Gal, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, The role of Wentzell boundary conditions in linear and nonlinear analysis,, In, (2009), 279.   Google Scholar

[4]

G. M. Coclite, A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Continuous dependence on the boundary conditions for the Wentzell Laplacian,, Semigroup Forum, 77 (2008), 101.  doi: 10.1007/s00233-008-9068-2.  Google Scholar

[5]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, (2000).   Google Scholar

[6]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary conditions,, J. Evol. Equ., 2 (2002), 1.  doi: 10.1007/s00028-002-8077-y.  Google Scholar

[7]

A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem,, Math. Nachr., 283 (2010), 504.  doi: 10.1002/mana.200910086.  Google Scholar

[8]

J. A. Goldstein, "Semigroups of Linear Operators and Applications,", Oxford University Press, (1985).  doi: 10.1016/0022-1236(69)90020-2.  Google Scholar

[9]

J. A. Goldstein, Time dependent hyperbolic equations,, J. Functional Analysis, 4 (1969), 31.   Google Scholar

[10]

J. A. Goldstein and G. Reyes, Asymptotic equipartition of operator-weighted energies in damped wave equations,, {Asymptotic Analysis}, ().   Google Scholar

[11]

T. Kato, "Perturbation Theory for Linear Operators,", Die Grundlehren der mathematischen Wissenschaften, (1966).   Google Scholar

[12]

P. D. Lax, "Functional Analysis,", Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], (2002).   Google Scholar

[13]

J.-L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications. Vol. I,", Die Grundlehren der mathematischen Wissenschaften, (1972).   Google Scholar

[14]

H. Triebel, "Theory of Function Spaces,", Monographs in Mathematics, (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

show all references

References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I,, Comm. Pure Appl. Math., 12 (1959), 623.  doi: 10.1002/cpa.3160120405.  Google Scholar

[2]

S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space,, Comm. Pure Appl. Math., 16 (1963), 121.  doi: 10.1002/cpa.3160160204.  Google Scholar

[3]

G. M. Coclite, A Favini, C. G. Gal, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, The role of Wentzell boundary conditions in linear and nonlinear analysis,, In, (2009), 279.   Google Scholar

[4]

G. M. Coclite, A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Continuous dependence on the boundary conditions for the Wentzell Laplacian,, Semigroup Forum, 77 (2008), 101.  doi: 10.1007/s00233-008-9068-2.  Google Scholar

[5]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, (2000).   Google Scholar

[6]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary conditions,, J. Evol. Equ., 2 (2002), 1.  doi: 10.1007/s00028-002-8077-y.  Google Scholar

[7]

A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem,, Math. Nachr., 283 (2010), 504.  doi: 10.1002/mana.200910086.  Google Scholar

[8]

J. A. Goldstein, "Semigroups of Linear Operators and Applications,", Oxford University Press, (1985).  doi: 10.1016/0022-1236(69)90020-2.  Google Scholar

[9]

J. A. Goldstein, Time dependent hyperbolic equations,, J. Functional Analysis, 4 (1969), 31.   Google Scholar

[10]

J. A. Goldstein and G. Reyes, Asymptotic equipartition of operator-weighted energies in damped wave equations,, {Asymptotic Analysis}, ().   Google Scholar

[11]

T. Kato, "Perturbation Theory for Linear Operators,", Die Grundlehren der mathematischen Wissenschaften, (1966).   Google Scholar

[12]

P. D. Lax, "Functional Analysis,", Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], (2002).   Google Scholar

[13]

J.-L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications. Vol. I,", Die Grundlehren der mathematischen Wissenschaften, (1972).   Google Scholar

[14]

H. Triebel, "Theory of Function Spaces,", Monographs in Mathematics, (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[1]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[2]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[3]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[4]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[5]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[6]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[7]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[8]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[9]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[10]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[11]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[12]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[13]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[14]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[15]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[16]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[17]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021009

[18]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[19]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[20]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[Back to Top]