March  2014, 13(2): 483-494. doi: 10.3934/cpaa.2014.13.483

Nontrivial solutions for Kirchhoff type equations via Morse theory

1. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

Received  March 2012 Revised  August 2013 Published  October 2013

In this paper, the existence of nontrivial solutions is obtained for a class of Kirchhoff type problems with Dirichlet boundary conditions by computing the critical groups and Morse theory.
Citation: Jijiang Sun, Shiwang Ma. Nontrivial solutions for Kirchhoff type equations via Morse theory. Communications on Pure & Applied Analysis, 2014, 13 (2) : 483-494. doi: 10.3934/cpaa.2014.13.483
References:
[1]

C. O. Alves, F. J. S. A. Correa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, Comput. Math. Appl., 49 (2005), 85. doi: 10.1016/j.camwa.2005.01.008. Google Scholar

[2]

T. Bartsch and S. J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance,, Nonlinear Anal., 28 (1997), 419. doi: 10.1016/0362-546X(95)00167-T. Google Scholar

[3]

G. Cerami, An existence criterion for the critical points on unbounded manifolds, (Italian), Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332. Google Scholar

[4]

K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems,", Birkh\, (1993). doi: 10.1007/978-1-4612-0385-8. Google Scholar

[5]

C. Y. Chen, Y. C. Kuo and T. F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions,, J. Differential Equations, 250 (2011), 1876. doi: 10.1016/j.jde.2010.11.017. Google Scholar

[6]

F. Fang and S. B. Liu, Nontrivial solutions of superlinear $p$-Laplacian equations,, J. Math Anal. Appl., 351 (2009), 138. doi: 10.1016/j.jmaa.2008.09.064. Google Scholar

[7]

X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$,, J. Differential Equations, 252 (2011), 1813. doi: 10.1016/j.jde.2011.08.035. Google Scholar

[8]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $R^N$,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787. doi: 10.1017/S0308210500013147. Google Scholar

[9]

Q. S. Jiu and J. B. Su, Existence and multiplicity results for Dirichlet problems with $p$-Laplacian,, J. Math. Anal.Appl., 281 (2003), 587. doi: 10.1016/S0022-247X(03)00165-3. Google Scholar

[10]

G. B. Li and C. Y. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition,, Nonlinear Anal., 72 (2010), 4602. doi: 10.1016/j.na.2010.02.037. Google Scholar

[11]

C. G. Liu and Y. Q. Zheng, Linking solutions for $p$-Laplace equations with nonlinear boundary conditions and indefinite weight,, Calc. Var. Partial Differential Equations, 41 (2011), 261. doi: 10.1007/s00526-010-0361-z. Google Scholar

[12]

J. Q. Liu, The Morse index of a saddle point,, Syst. Sci. Math. Sci., 2 (1989), 32. Google Scholar

[13]

J. Q. Liu and J. B. Su, Remarks on multiple nontrivial solutions for quasi-linear resonant problems,, J. Math. Anal. Appl., 258 (2001), 209. doi: 10.1006/jmaa.2000.7374. Google Scholar

[14]

S. B. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition,, Nonlinear Anal., 73 (2010), 788. doi: 10.1016/j.na.2010.04.016. Google Scholar

[15]

S. B. Liu and S. J. Li, Infinitely many solutions for a superlinear elliptic equation,, Acta Mathematica Sinica, 46 (2003), 625. Google Scholar

[16]

T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem,, Appl. Math. Lett., 16 (2003), 243. doi: 10.1016/S0893-9659(03)80038-1. Google Scholar

[17]

A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,, Nonlinear Anal., 70 (2009), 1275. doi: 10.1016/j.na.2008.02.011. Google Scholar

[18]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", in: Applied Mathematical Sciences, 74 (1989). doi: 10.1007/978-1-4757-2061-7. Google Scholar

[19]

K. Perera, R. P. Agarwal and D. O'Regan, "Morse Theoretic Aspects of $p$-Laplacian Type Operators,", Amer. Math. Soc, (2010). Google Scholar

[20]

K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index,, J. Differential Equations, 221 (2006), 246. doi: 10.1016/j.jde.2005.03.006. Google Scholar

[21]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conference Series in Mathematics, 65 (1986). Google Scholar

[22]

J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations,, Nonlinear Anal., 74 (2011), 1212. doi: 10.1016/j.na.2010.09.061. Google Scholar

[23]

J. J. Sun and C. L. Tang, Resonance problems for Kirchhoff type equations,, Discrete Contin. Dyn. Syst., 33 (2013), 2139. doi: 10.3934/dcds.2013.33.2139. Google Scholar

[24]

J. Wang and C. L. Tang, Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations,, Boundary Value Probl., 2006 (2006), 1. doi: 10.1155/BVP/2006/47275. Google Scholar

[25]

Z. Q. Wang, On a superlinear elliptic equation,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire., 8 (1991), 43. Google Scholar

[26]

M. Willem, "Minimax Theorems,", Birkh\, (1996). doi: 10.1007/978-1-4612-4146-1. Google Scholar

[27]

Y. Yang and J. H. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory,, Appl. Math. Lett., 23 (2010), 377. doi: 10.1016/j.aml.2009.11.001. Google Scholar

[28]

Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, J. Math. Anal. Appl., 317 (2006), 456. doi: 10.1016/j.jmaa.2005.06.102. Google Scholar

show all references

References:
[1]

C. O. Alves, F. J. S. A. Correa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, Comput. Math. Appl., 49 (2005), 85. doi: 10.1016/j.camwa.2005.01.008. Google Scholar

[2]

T. Bartsch and S. J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance,, Nonlinear Anal., 28 (1997), 419. doi: 10.1016/0362-546X(95)00167-T. Google Scholar

[3]

G. Cerami, An existence criterion for the critical points on unbounded manifolds, (Italian), Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332. Google Scholar

[4]

K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems,", Birkh\, (1993). doi: 10.1007/978-1-4612-0385-8. Google Scholar

[5]

C. Y. Chen, Y. C. Kuo and T. F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions,, J. Differential Equations, 250 (2011), 1876. doi: 10.1016/j.jde.2010.11.017. Google Scholar

[6]

F. Fang and S. B. Liu, Nontrivial solutions of superlinear $p$-Laplacian equations,, J. Math Anal. Appl., 351 (2009), 138. doi: 10.1016/j.jmaa.2008.09.064. Google Scholar

[7]

X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$,, J. Differential Equations, 252 (2011), 1813. doi: 10.1016/j.jde.2011.08.035. Google Scholar

[8]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $R^N$,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787. doi: 10.1017/S0308210500013147. Google Scholar

[9]

Q. S. Jiu and J. B. Su, Existence and multiplicity results for Dirichlet problems with $p$-Laplacian,, J. Math. Anal.Appl., 281 (2003), 587. doi: 10.1016/S0022-247X(03)00165-3. Google Scholar

[10]

G. B. Li and C. Y. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition,, Nonlinear Anal., 72 (2010), 4602. doi: 10.1016/j.na.2010.02.037. Google Scholar

[11]

C. G. Liu and Y. Q. Zheng, Linking solutions for $p$-Laplace equations with nonlinear boundary conditions and indefinite weight,, Calc. Var. Partial Differential Equations, 41 (2011), 261. doi: 10.1007/s00526-010-0361-z. Google Scholar

[12]

J. Q. Liu, The Morse index of a saddle point,, Syst. Sci. Math. Sci., 2 (1989), 32. Google Scholar

[13]

J. Q. Liu and J. B. Su, Remarks on multiple nontrivial solutions for quasi-linear resonant problems,, J. Math. Anal. Appl., 258 (2001), 209. doi: 10.1006/jmaa.2000.7374. Google Scholar

[14]

S. B. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition,, Nonlinear Anal., 73 (2010), 788. doi: 10.1016/j.na.2010.04.016. Google Scholar

[15]

S. B. Liu and S. J. Li, Infinitely many solutions for a superlinear elliptic equation,, Acta Mathematica Sinica, 46 (2003), 625. Google Scholar

[16]

T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem,, Appl. Math. Lett., 16 (2003), 243. doi: 10.1016/S0893-9659(03)80038-1. Google Scholar

[17]

A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,, Nonlinear Anal., 70 (2009), 1275. doi: 10.1016/j.na.2008.02.011. Google Scholar

[18]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", in: Applied Mathematical Sciences, 74 (1989). doi: 10.1007/978-1-4757-2061-7. Google Scholar

[19]

K. Perera, R. P. Agarwal and D. O'Regan, "Morse Theoretic Aspects of $p$-Laplacian Type Operators,", Amer. Math. Soc, (2010). Google Scholar

[20]

K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index,, J. Differential Equations, 221 (2006), 246. doi: 10.1016/j.jde.2005.03.006. Google Scholar

[21]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conference Series in Mathematics, 65 (1986). Google Scholar

[22]

J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations,, Nonlinear Anal., 74 (2011), 1212. doi: 10.1016/j.na.2010.09.061. Google Scholar

[23]

J. J. Sun and C. L. Tang, Resonance problems for Kirchhoff type equations,, Discrete Contin. Dyn. Syst., 33 (2013), 2139. doi: 10.3934/dcds.2013.33.2139. Google Scholar

[24]

J. Wang and C. L. Tang, Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations,, Boundary Value Probl., 2006 (2006), 1. doi: 10.1155/BVP/2006/47275. Google Scholar

[25]

Z. Q. Wang, On a superlinear elliptic equation,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire., 8 (1991), 43. Google Scholar

[26]

M. Willem, "Minimax Theorems,", Birkh\, (1996). doi: 10.1007/978-1-4612-4146-1. Google Scholar

[27]

Y. Yang and J. H. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory,, Appl. Math. Lett., 23 (2010), 377. doi: 10.1016/j.aml.2009.11.001. Google Scholar

[28]

Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, J. Math. Anal. Appl., 317 (2006), 456. doi: 10.1016/j.jmaa.2005.06.102. Google Scholar

[1]

Qilin Xie, Jianshe Yu. Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Communications on Pure & Applied Analysis, 2019, 18 (1) : 129-158. doi: 10.3934/cpaa.2019008

[2]

Massimiliano Ferrara, Giovanni Molica Bisci, Binlin Zhang. Existence of weak solutions for non-local fractional problems via Morse theory. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2483-2499. doi: 10.3934/dcdsb.2014.19.2483

[3]

M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703

[4]

Thomas Bartsch, Anna Maria Micheletti, Angela Pistoia. The Morse property for functions of Kirchhoff-Routh path type. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1867-1877. doi: 10.3934/dcdss.2019123

[5]

Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139

[6]

Xing Liu, Yijing Sun. Multiple positive solutions for Kirchhoff type problems with singularity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 721-733. doi: 10.3934/cpaa.2013.12.721

[7]

Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773

[8]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

[9]

Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124

[10]

Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079

[11]

Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007

[12]

Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027

[13]

Yinbin Deng, Wentao Huang. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1929-1954. doi: 10.3934/dcdss.2019126

[14]

Philip Schrader. Morse theory for elastica. Journal of Geometric Mechanics, 2016, 8 (2) : 235-256. doi: 10.3934/jgm.2016006

[15]

Shu-Zhi Song, Shang-Jie Chen, Chun-Lei Tang. Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6453-6473. doi: 10.3934/dcds.2016078

[16]

Jiafeng Liao, Peng Zhang, Jiu Liu, Chunlei Tang. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems at resonance. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1959-1974. doi: 10.3934/dcdss.2016080

[17]

Wenguo Shen. Unilateral global interval bifurcation for Kirchhoff type problems and its applications. Communications on Pure & Applied Analysis, 2018, 17 (1) : 21-37. doi: 10.3934/cpaa.2018002

[18]

Zhirong He, Weinian Zhang. Critical periods of a periodic annulus linking to equilibria at infinity in a cubic system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 841-854. doi: 10.3934/dcds.2009.24.841

[19]

Fabio Giannoni, Paolo Piccione, Daniel V. Tausk. Morse theory for the travel time brachistochrones in stationary spacetimes. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 697-724. doi: 10.3934/dcds.2002.8.697

[20]

Jia-Feng Liao, Yang Pu, Xiao-Feng Ke, Chun-Lei Tang. Multiple positive solutions for Kirchhoff type problems involving concave-convex nonlinearities. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2157-2175. doi: 10.3934/cpaa.2017107

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]