\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Schrödinger-like operators and the eikonal equation

Abstract / Introduction Related Papers Cited by
  • Let $V$ be a real-valued function of class $C^5$ on $\mathbb{R}^n$, $n \geq 2$, and suppose that $\partial^\alpha V(x)=O(|x|^{-|\alpha|})$, as $|x| \to \infty$, for $|\alpha| \leq 5$. For $\lambda > 0$ we set $W_\lambda(x) = 1-(V(x)/\lambda)$ and consider the Schrödinger-like operator $\mathcal{H}_\lambda=W_\lambda^{-{1/2}} H_0 W_\lambda^{-{1/2}}$ acting on $L^2(\mathbb{R}^n)$, where $H_0=-\Delta$ is the classical laplacian on $\mathbb{R}^n$. Using properties of the maximal solution to the eikonal equation $|\nabla S_\lambda|^2=W_\lambda$, for $\lambda$ sufficiently large we establish the behavior of $(\mathcal{H}_\lambda-z^2)^{-1}$ as Im $z\downarrow 0$ in the framework of Besov Spaces $B(\mathbb{R}^n)$. For $k\in \mathbb{R}\setminus\{0\}$ and $f\in B(\mathbb{R}^n)$ we find the unique solution to $-\Delta u-k^2 W_\lambda u = f $ on $\mathbb{R}^n$ that satisfies a certain radiation condition. These results can be applied to the study of the scattering theory of the Schrödinger operator $H=-\Delta+V$.
    Mathematics Subject Classification: Primary: 35P25, 81U99, 47A40; Secondary: 46C99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Adams, "Sobolev Spaces," Pure and Applied Mathematics, Vol. 65, Academic Press, 1975.

    [2]

    S. Agmon, "Lectures on Elliptic Boundary Value Problems," D. Van Nostrand Co. In., 1965.

    [3]

    S. Agmon, "Unicité et convexité dans les problèmes différentiels," Séminaire de Mathématiques Supérieures, No. 13 (Été, 1965) Les Presses de l'Université de Montréal, Montreal, Que., 1966.

    [4]

    S. Agmon, Lower bounds for solutions of Schrdinger equations, Journal D'analyse Mathématique, 23 (1970), 1-25,

    [5]

    S. Agmon, "Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations. Bounds on Eigenfunctions of N-Body Schrödinger Operators," Mathematical Notes 29, Princeton University Press, 1982.

    [6]

    S. Agmon, On the asymptotic behavior of solutions of Schröinger type equations in unbounded domains, Analyse mathématique et applications, 122, Gauthier-Villars, Montrouge, 1988.

    [7]

    S. Agmon, Representation theorems for solutions of the Helmholtz equation on $\mathbbR^n$, Differential Operators and Spectral Theory, 27-43, Amer. Math. Soc. Transl. Ser. 2, 189, Amer. Math. Soc., Providence, RI, 1999.

    [8]

    S. Agmon, J. Cruz-Sampedro and I. Herbst, Generalized Fourier transform for Schrödinger operators with potentials of order zero, Journal of Functional Analysis, 167 (1999), 345-369.

    [9]

    S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics, Journal D'Analyse Mathématique, 30 (1976).

    [10]

    S. Agmon and L. Nirenberg, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space, Comm. Pure Appl. Math., 20 (1967), 207-229.

    [11]

    G. Barles, On eikonal equations associated with Schrödinger operators with nonspherical radiation conditions, Commun. in Partial Differential Equations, 12 (1987), 263-283.

    [12]

    M. Ben-Artzi, Unitary equivalence and scattering theory for Stark-like Hamiltonians, J. Math. Phys., 25 (1984), 951-964.

    [13]

    P. Constantin, Scattering for Schröinger operators in a class of domains with noncompact boundaries, J. Funct. Anal., 44 (1981), 87-119.

    [14]

    J. Cruz-Sampedro, Exact asymptotic behavior at infinity of solutions to abstract second-order differential inequalities in Hilbert spaces, Math. Z., 237 (2001), 727-235.

    [15]

    J. Cruz-Sampedro, Boundary values of the resolvent of Schrödinger hamiltonians with potentials of order zero, Discrete Contin. Dyn. Syst., 33 (2013), 1061-1076.

    [16]

    A. Hassell, R. Melrose and A. Vasy, Spectral and scattering theory for symbolic potentials of order zero, Adv. Math., 181 (2004), 1-87.

    [17]

    A. Hassell, R. Melrose and A. Vasy, Microlocal propagation near radial points and scattering for symbolic potentials of order zero, Anal. PDE, 1 (2008), 127-196.

    [18]

    L. Hörmander, "The Analysis of Linear Partial Differential Operators III," Springer-Verlag, Berlin, 1985.doi: 978-3-540-49938-1.

    [19]

    W. Jäger, Über das Dirichletsche Außenraumproblem für die Schwingungsgleichung, Math. Z., 95 (1967), 299-323.

    [20]

    W. Jäger, Zur Theorie der Schwingungsgleichung mit variablen Koeffizienten in Außengebieten, Math. Z., 102 (1967), 62-88.

    [21]

    W. Jäger, Das asymptotische Verhalten von Lsngen eines Typs von Differentialgleichungen, Math. Z., 112 (1969), 26-36.

    [22]

    W. Jäger and P. Rejto, Limiting absorption principle for some Schrödinger operators with exploding potentials. II, J. Math. Anal. Appl., 95 (1983), 169-194.

    [23]

    D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. Math., 121 (1985), 463-494.

    [24]

    A. Jensen and P. Perry, Commutator methods and Besov space estimates for Schrödinger operators, J. Operator Theory, 14 (1985), 181-188.

    [25]

    P. Lions, "Generalized Solutions of Hamilton-Jacobi Equations," Pitman, London, 1982.

    [26]

    M. Reed and B. Simon, "Methods of Modern Mathematical Physics, II Fourier Analysis Self-Adjontness," New York, Academic Press, 1978.

    [27]

    M. Reed and B. Simon, "Methods of Modern Mathematical Physics, III Sacattering Theory," New York, Academic Press, 1979.

    [28]

    M. Reed and B. Simon, "Methods of Modern Mathematical Physics, IV Analysis of Operators," Academic Press, 1978.

    [29]

    Y. Saitō, "Spectral Representations for Schrödinger Operators with Long-range Potentials," Lecture Notes in Mathematics, 727. Springer, Berlin, 1979.doi: 978-3-540-35132-0.

    [30]

    Y. Saitō, Schrödinger operators with a nonspherical radiation condition, Pacific J. Math., 126 (1987), 331-359.

    [31]

    I. Sigal, "Scattering Theory for Many-Body Quantum Mechanical Systems," Lecture Notes in Mathematics 1011, Springer Verlag, 1983.doi: 978-3-540-38664-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(72) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return