March  2014, 13(2): 511-525. doi: 10.3934/cpaa.2014.13.511

Liouville type theorem to an integral system in the half-space

1. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China, China

2. 

Department of Applied Mathematics, Dalian University of Technology, Dalian 116024

Received  July 2012 Revised  June 2013 Published  October 2013

In this paper, by using the moving plane method in integral forms, we establish a Liouville type theorem for a coupled integral system with Navier boundary values in the half-space. Furthermore, we prove that the Liouville type theorem is valid for the related differential system as well under an additional assumption by showing the equivalence between the involved differential and integral systems.
Citation: Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511
References:
[1]

Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1217-1247. doi: 10.1017/S0308210500027293.  Google Scholar

[2]

Math. Scand., 2 (1985), 293-345.  Google Scholar

[3]

Discrete Contin. Dyn. Syst., 33 (2013), 3937-3955. doi: 10.3934/dcds.2013.33.3937.  Google Scholar

[4]

J. Math. Anal. Appl., 389 (2012), 1365-1373. doi: 10.1016/j.jmaa.2012.01.015.  Google Scholar

[5]

Discrete Contin. Dyn. Syst., suppl. (2005), 164-172.  Google Scholar

[6]

Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 949-960. doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[7]

Commun. Pure Appl. Anal., 12 (2013), 2497-2514. doi: 10.3934/cpaa.2013.12.2497.  Google Scholar

[8]

Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.  Google Scholar

[9]

Nonlinear Anal., 73 (2010), 2410-2425. doi: 10.1016/j.na.2010.06.012.  Google Scholar

[10]

Ann. Probab., 24 (1996), 293-319. doi: 10.1214/aop/1042644718.  Google Scholar

[11]

Ann. Sc. Norm. Super. Pisa Cl. Sci., 1 (2002), 387-434.  Google Scholar

[12]

Calc. Var. Partial Differential Equations, 15 (2002), 493-517. doi: 10.1007/s005260100134.  Google Scholar

[13]

Adv. Math., 229 (2012), 2835-2867. doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[14]

Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387-397.  Google Scholar

[15]

Nonlinear Anal. Real World Appl., 12 (2011), 3515-3530. doi: 10.1016/j.nonrwa.2011.06.012.  Google Scholar

[16]

Proc. Amer. Math. Soc., 134 (2006), 1661-1670 . doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[17]

Proc. Amer. Math. Soc., 140 (2012), 541-551. doi: 10.1090/S0002-9939-2011-11401-1.  Google Scholar

[18]

SIAM J. Appl. Math., 43 (1983), 465-475. doi: 10.1137/0143030.  Google Scholar

[19]

SIAM J. Math. Anal., 40 (2008), 1049-1057. doi: 10.1137/080712301.  Google Scholar

[20]

Proc. Amer. Math. Soc., 138 (2010), 2779-2791. doi: 10.1090/S0002-9939-10-10368-2.  Google Scholar

[21]

J. Differential Equations, 225 (2006), 685-709. doi: 10.1016/j.jde.2005.10.016.  Google Scholar

[22]

Commun. Pure Appl. Anal., 5 (2006), 855-859. doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[23]

Differential Integral Equations, 9 (1996), 465-479.  Google Scholar

[24]

J. Differential Equations, 233 (2007), 151-180. doi: 10.1016/j.jde.2006.09.018.  Google Scholar

[25]

in "Handbook of Differential Equations, Stationary Partial Differential Equations," Volume 3, Chapter 7 (Eds. M. Chipot and P. Quittner), Elsevier, 2006. Google Scholar

[26]

Birkhauser Boston, Inc., Boston, MA, 2001.  Google Scholar

[27]

Duke Math. J., 139 (2007), 555-579. doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[28]

Math. Z., 261 (2009), 805-827. doi: 10.1007/s00209-008-0352-3.  Google Scholar

[29]

J. Differential Equations, 248 (2010), 1866-1878. doi: 10.1016/j.jde.2009.09.012.  Google Scholar

[30]

Differential Integral Equations, 9 (1996), 635-653.  Google Scholar

[31]

J. Math. Pures Appl., 89 (2008), 114-133. doi: 10.1016/j.matpur.2007.10.003.  Google Scholar

[32]

J. Differential Equations, 161 (2000), 110-153. doi: 10.1006/jdeq.1999.3698.  Google Scholar

[33]

Math. Ann., 313 (1999), 207-228. doi: 10.1017/S0308210500027293.  Google Scholar

show all references

References:
[1]

Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1217-1247. doi: 10.1017/S0308210500027293.  Google Scholar

[2]

Math. Scand., 2 (1985), 293-345.  Google Scholar

[3]

Discrete Contin. Dyn. Syst., 33 (2013), 3937-3955. doi: 10.3934/dcds.2013.33.3937.  Google Scholar

[4]

J. Math. Anal. Appl., 389 (2012), 1365-1373. doi: 10.1016/j.jmaa.2012.01.015.  Google Scholar

[5]

Discrete Contin. Dyn. Syst., suppl. (2005), 164-172.  Google Scholar

[6]

Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 949-960. doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[7]

Commun. Pure Appl. Anal., 12 (2013), 2497-2514. doi: 10.3934/cpaa.2013.12.2497.  Google Scholar

[8]

Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.  Google Scholar

[9]

Nonlinear Anal., 73 (2010), 2410-2425. doi: 10.1016/j.na.2010.06.012.  Google Scholar

[10]

Ann. Probab., 24 (1996), 293-319. doi: 10.1214/aop/1042644718.  Google Scholar

[11]

Ann. Sc. Norm. Super. Pisa Cl. Sci., 1 (2002), 387-434.  Google Scholar

[12]

Calc. Var. Partial Differential Equations, 15 (2002), 493-517. doi: 10.1007/s005260100134.  Google Scholar

[13]

Adv. Math., 229 (2012), 2835-2867. doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[14]

Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387-397.  Google Scholar

[15]

Nonlinear Anal. Real World Appl., 12 (2011), 3515-3530. doi: 10.1016/j.nonrwa.2011.06.012.  Google Scholar

[16]

Proc. Amer. Math. Soc., 134 (2006), 1661-1670 . doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[17]

Proc. Amer. Math. Soc., 140 (2012), 541-551. doi: 10.1090/S0002-9939-2011-11401-1.  Google Scholar

[18]

SIAM J. Appl. Math., 43 (1983), 465-475. doi: 10.1137/0143030.  Google Scholar

[19]

SIAM J. Math. Anal., 40 (2008), 1049-1057. doi: 10.1137/080712301.  Google Scholar

[20]

Proc. Amer. Math. Soc., 138 (2010), 2779-2791. doi: 10.1090/S0002-9939-10-10368-2.  Google Scholar

[21]

J. Differential Equations, 225 (2006), 685-709. doi: 10.1016/j.jde.2005.10.016.  Google Scholar

[22]

Commun. Pure Appl. Anal., 5 (2006), 855-859. doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[23]

Differential Integral Equations, 9 (1996), 465-479.  Google Scholar

[24]

J. Differential Equations, 233 (2007), 151-180. doi: 10.1016/j.jde.2006.09.018.  Google Scholar

[25]

in "Handbook of Differential Equations, Stationary Partial Differential Equations," Volume 3, Chapter 7 (Eds. M. Chipot and P. Quittner), Elsevier, 2006. Google Scholar

[26]

Birkhauser Boston, Inc., Boston, MA, 2001.  Google Scholar

[27]

Duke Math. J., 139 (2007), 555-579. doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[28]

Math. Z., 261 (2009), 805-827. doi: 10.1007/s00209-008-0352-3.  Google Scholar

[29]

J. Differential Equations, 248 (2010), 1866-1878. doi: 10.1016/j.jde.2009.09.012.  Google Scholar

[30]

Differential Integral Equations, 9 (1996), 635-653.  Google Scholar

[31]

J. Math. Pures Appl., 89 (2008), 114-133. doi: 10.1016/j.matpur.2007.10.003.  Google Scholar

[32]

J. Differential Equations, 161 (2000), 110-153. doi: 10.1006/jdeq.1999.3698.  Google Scholar

[33]

Math. Ann., 313 (1999), 207-228. doi: 10.1017/S0308210500027293.  Google Scholar

[1]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[2]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

[3]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[4]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[5]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[6]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[7]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[8]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[9]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009

[10]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[11]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[12]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[13]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[14]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[15]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374

[16]

Nadezhda Maltugueva, Nikolay Pogodaev. Modeling of crowds in regions with moving obstacles. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021066

[17]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[18]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[19]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[20]

Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]