\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Well-posedness for the supercritical gKdV equation

Abstract Related Papers Cited by
  • In this paper we consider the supercritical generalized Korteweg-de~Vries equation $\partial_t\psi + \partial_{x x x}\psi + \partial_x(|\psi|^{p-1}\psi) = 0$, where $5 \leq p \in R$. We prove a local well-posedness result in the homogeneous Besov space $\dot B_\infty^{s_p,2}(R)$, where $s_p=\frac12-\frac{2}{p-1}$ is the scaling critical index. In particular local well-posedness in the smaller inhomogeneous Sobolev space $H^{s_p}(R)$ can be proved similarly. As a byproduct a global well-posedness result for small initial data is also obtained.
    Mathematics Subject Classification: Primary: 35Q53; Secondary: 35B30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Jöran Bergh and Jörgen Löfström, "Interpolation Spaces. An Introduction", Springer-Verlag, Berlin, 1976, Grundlehren der Mathematischen Wissenschaften, No. 223.doi: 10.1007/978-3-642-66451-9.

    [2]

    Michael Christ, James E. Colliander and Terence Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 125 (2003), 1235-1293.doi: 10.1353/ajm.2003.0040.

    [3]

    Luiz G. Farah, Felipe Linares and Ademir Pastor, The supercritical generalized KdV equation: global well-posedness in the energy space and below, Math. Res. Lett., 18 (2011), 357-377.doi: 10.4310/MRL.2011.v18.n2.a13.

    [4]

    Axel Grünrock, A bilinear Airy-estimate with application to gKdV-3, Differential Integral Equations, 18 (2005), 1333-1339.

    [5]

    Martin Hadac, Sebastian Herr and Herbert Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 917-941, Erratum: ibid., 3 (2010), 971-972.doi: 10.1016/j.anihpc.2008.04.002.

    [6]

    Carlos E. Kenig, Gustavo Ponce and Luis Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.doi: 10.1002/cpa.3160460405.

    [7]

    Carlos E. Kenig, Gustavo Ponce and Luis Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.doi: 10.1090/S0894-0347-96-00200-7.

    [8]

    Herbert Koch and Jeremy L. Marzuola, Small data scattering and soliton stability in $\dot H^{-\frac16}$ for the quartic KdV Equation, Anal. PDE, 5 (2012), 145-198.doi: 10.2140/apde.2012.5.145.

    [9]

    Herbert Koch and Daniel Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math., 58 (2005), 217-284.doi: 10.1002/cpa.20067.

    [10]

    Herbert Koch and Daniel Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not. IMRN, 2007 (2007), Art. ID rnm053, 36.doi: 10.1093/imrn/rnm053.

    [11]

    Luc Molinet and Francis Ribaud, On the Cauchy problem for the generalized Korteweg-de Vries equation, Comm. Partial Differential Equations, 28 (2003), 2065-2091.doi: 10.1081/PDE-120025496.

    [12]

    Terence Tao, Scattering for the quartic generalised Korteweg-de Vries equation, J. Differential Equations, 232 (2007), 623-651.doi: 10.1016/j.jde.2006.07.019.

    [13]

    Norbert Wiener, The quadratic variation of a function and its fourier coefficients., Journ. Math. Phys., 3 (1924), 72-94.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(84) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return