March  2014, 13(2): 543-566. doi: 10.3934/cpaa.2014.13.543

Finite speed of propagation and algebraic time decay of solutions to a generalized thin film equation

1. 

School of Science, Nanjing University of Science and Technology, Nanjing, 210094, China, China

Received  October 2012 Revised  July 2013 Published  October 2013

We consider a fourth order degenerate equation describing thin films over an inclined plane in this paper. A new approximating problem is introduced in order to obtain the local energy estimate of the solution. Based on combined use of local entropy estimate, local energy estimate and the suitable extensions of Stampacchia's Lemma to systems, we obtain the finite speed of propagation property of strong solutions, which has been known for the case of strong slippage $ n<2, $ in the case of weak slippage $ 2 \leq n < 3. $ The long time behavior of positive classical solutions is also discussed. We apply the entropy dissipation method to quantify the explicit rate of convergence in the $ L^\infty $ norm of the solution, and this improves and extends the previous results.
Citation: Lihua Min, Xiaoping Yang. Finite speed of propagation and algebraic time decay of solutions to a generalized thin film equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 543-566. doi: 10.3934/cpaa.2014.13.543
References:
[1]

L. Ansini and L. Giacomelli, Doubly nonlinear thin-film equations in one space dimension,, Arch. Rational Mech. Anal., 173 (2004), 89.  doi: 10.1007/s00205-004-0313-x.  Google Scholar

[2]

F. Bernis, Finite speed of propagation and continuity of the interface for thin viscous flows,, Adv. Differential Equations, 1 (1996), 337.   Google Scholar

[3]

F. Bernis, Finite speed of propagation for thin viscous flows when $ 2 \le n < 3 $,, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 1169.   Google Scholar

[4]

F. Bernis and A. Friedman, Higher-order nonlinear degenerate parabolic equations,, J. Diff. Equations, 83 (1990), 179.  doi: 10.1016/0022-0396(90)90074-Y.  Google Scholar

[5]

F. Bernis, L. A. Peletier and S. M. Williams, Source type solutions of a fourth order nonlinear degenerate parabolic equation,, Nonlinear Anal., 18 (1992), 217.  doi: 10.1016/0362-546X(92)90060-R.  Google Scholar

[6]

A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: the moving contact line with a porous media cutoff of the van der Waals interactions,, Nonlinearity, 7 (1994), 1535.   Google Scholar

[7]

A. L. Bertozzi and M. C. Pugh, The lubrication approximation for viscous films: regularity and long time behavior of weak solutions,, Comm. Pure Appl. Math., 49 (1996), 85.  doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.3.CO;2-V.  Google Scholar

[8]

A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations,, Comm. Pure Appl. Math., 51 (1998), 625.  doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.3.CO;2-2.  Google Scholar

[9]

M. Bertsch, R. Dal Passo, H. Garcke and G. Grün, The thin viscous flow equation in higher space dimensions,, Adv Differ. Equ., 3 (1998), 417.   Google Scholar

[10]

E. Bertta, M. Bertsch and R. Dal Passo, Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation,, Arch. Ration. Mech. Anal., 129 (1995), 175.   Google Scholar

[11]

M. Boutat, S. Hilout, J. E. Rakotoson and J. M. Rakotoson, A generalized thin-film equation in multidimensional space,, Nonlinear Analysis, 69 (2008), 1268.  doi: 10.1016/j.na.2007.06.028.  Google Scholar

[12]

M. Boutat, S. Hilout, J. E. Rakotoson, J. M. Rakotoson, The generalized thin film equation with periodic-domain conditions,, Applied Mathematics Letters, 21 (2008), 101.  doi: 10.1016/j.aml.2007.02.014.  Google Scholar

[13]

E. A. Carlen and S. Ulusory, An entropy dissipation-entropy estimate for a thin film type equation,, Comm. Math. Sci., 3 (2005), 171.   Google Scholar

[14]

J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,, Monatsh. Math., 133 (2001), 1.  doi: 10.1007/s006050170032.  Google Scholar

[15]

J. A. Carrillo and G. Toscani, Long-time asymptotics for strong solutions of the thin film equation,, Commun. Math. Phys., 225 (2002), 551.  doi: 10.1007/s002200100591.  Google Scholar

[16]

M. Chugunova, M. Pugh and R. Taranets, Research announcement: Finite-time blow up and long-wave unstable thin film equations,, preprint, ().   Google Scholar

[17]

R. Dal Passo, H. Garcke and G. Grün, On a fourth order degenerate parabolic equation: global entropy estimates, existence, and qualitative behaviour of solutions,, SIAM J. Math. Anal., 29 (1998), 321.   Google Scholar

[18]

R. Dal Passo, L. Giacomelli and G. Grün, A waiting time phenomenon for thin film equations,, Ann. Scuola Norm. Sup. Pisa, 30 (2001), 437.   Google Scholar

[19]

R. Dal Passo, L. Giacomelli and A. Shishkov, The thin film equation with nonlinear diffusion,, Comm. Partial Differential Equations, 26 (2001), 1509.   Google Scholar

[20]

S. D. Èĭdel'man, Parabolic Systems,, Translated from the Russian by Scripta Technica, (1969).   Google Scholar

[21]

A. Friedman, Partial Differential Equations,, Holt, ().   Google Scholar

[22]

L. Giacomelli, A fourth-order degenerate parabolic equation describing thin viscous flows over an inclined plane,, Applied Mathematics Letters, 12 (1999), 107.  doi: 10.1016/S0893-9659(99)00130-5.  Google Scholar

[23]

L. Giacomelli and A. Shishkov, Propagation of support in one-dimensional convected thin-film flow,, Indiana Univ. Math. J., 54 (2005), 1181.  doi: 10.1512/iumj.2005.54.2532.  Google Scholar

[24]

G. Grün, Degenerate parabolic differential equations of fourth order and a plasticity model with nonlocal harding,, Z. Anal. Anwendungen., 14 (1995), 541.   Google Scholar

[25]

G. Grün, "On Free Boundary Problems Arising in Thin Film Flow,", Habilitation thesis, (2001).   Google Scholar

[26]

G. Grün, Droplet spreading under weak slippage: the waiting time phenomenon,, Ann. I. H. Poincaré–AN, 21 (2004), 255.  doi: 10.1016/j.ahihpc.2003.02.002.  Google Scholar

[27]

L. M. Hocking, Spreading and instability of a viscous fluid sheet,, Journal of Fluid Mechanics, 211 (1990), 373.  doi: 10.1017/S0022112090001616.  Google Scholar

[28]

J. R. King, Two generalisations of the thin film equation,, Math. Comput. Modelling, 34 (2001), 737.  doi: 10.1016/S0895-7177(01)00095-4.  Google Scholar

[29]

J. J. Li, On a fourth order degenerate parabolic equation in higher space dimensions,, Journal of Mathematical Physics, 50 (2009).  doi: 10.1063/1.3272788.  Google Scholar

[30]

X. Liu and C. Qu, Finite speed of propagation for thin viscous flows over an inclined plane,, Nonlinear Anal. Real World Appl., 13 (2012), 464.  doi: 10.1016/j.nonrwa.2011.08.003.  Google Scholar

[31]

E. Momoniata, T. G. Myers and S. Abelman, Similarity solutions of thin film flow driven by gravity and surface shear,, Nonlinear Analysis: Real World Applications, 10 (2009), 3443.  doi: 10.1016/j.nonrwa.2008.10.070.  Google Scholar

[32]

A. Oron, S. H, Davis and S. G. Bankoff, Long-scale evolution of thin liquid films,, Rev. Modern Phys., 69 (1997), 931.  doi: 10.1103/RevModPhys.69.931.  Google Scholar

[33]

E. O. Tuck and L. W. Schwaxtz, Thin static drops with a free attachment boundary,, Journal of Fluid Mechanics, 223 (1991), 313.   Google Scholar

[34]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in, (2002), 71.   Google Scholar

show all references

References:
[1]

L. Ansini and L. Giacomelli, Doubly nonlinear thin-film equations in one space dimension,, Arch. Rational Mech. Anal., 173 (2004), 89.  doi: 10.1007/s00205-004-0313-x.  Google Scholar

[2]

F. Bernis, Finite speed of propagation and continuity of the interface for thin viscous flows,, Adv. Differential Equations, 1 (1996), 337.   Google Scholar

[3]

F. Bernis, Finite speed of propagation for thin viscous flows when $ 2 \le n < 3 $,, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 1169.   Google Scholar

[4]

F. Bernis and A. Friedman, Higher-order nonlinear degenerate parabolic equations,, J. Diff. Equations, 83 (1990), 179.  doi: 10.1016/0022-0396(90)90074-Y.  Google Scholar

[5]

F. Bernis, L. A. Peletier and S. M. Williams, Source type solutions of a fourth order nonlinear degenerate parabolic equation,, Nonlinear Anal., 18 (1992), 217.  doi: 10.1016/0362-546X(92)90060-R.  Google Scholar

[6]

A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: the moving contact line with a porous media cutoff of the van der Waals interactions,, Nonlinearity, 7 (1994), 1535.   Google Scholar

[7]

A. L. Bertozzi and M. C. Pugh, The lubrication approximation for viscous films: regularity and long time behavior of weak solutions,, Comm. Pure Appl. Math., 49 (1996), 85.  doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.3.CO;2-V.  Google Scholar

[8]

A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations,, Comm. Pure Appl. Math., 51 (1998), 625.  doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.3.CO;2-2.  Google Scholar

[9]

M. Bertsch, R. Dal Passo, H. Garcke and G. Grün, The thin viscous flow equation in higher space dimensions,, Adv Differ. Equ., 3 (1998), 417.   Google Scholar

[10]

E. Bertta, M. Bertsch and R. Dal Passo, Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation,, Arch. Ration. Mech. Anal., 129 (1995), 175.   Google Scholar

[11]

M. Boutat, S. Hilout, J. E. Rakotoson and J. M. Rakotoson, A generalized thin-film equation in multidimensional space,, Nonlinear Analysis, 69 (2008), 1268.  doi: 10.1016/j.na.2007.06.028.  Google Scholar

[12]

M. Boutat, S. Hilout, J. E. Rakotoson, J. M. Rakotoson, The generalized thin film equation with periodic-domain conditions,, Applied Mathematics Letters, 21 (2008), 101.  doi: 10.1016/j.aml.2007.02.014.  Google Scholar

[13]

E. A. Carlen and S. Ulusory, An entropy dissipation-entropy estimate for a thin film type equation,, Comm. Math. Sci., 3 (2005), 171.   Google Scholar

[14]

J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,, Monatsh. Math., 133 (2001), 1.  doi: 10.1007/s006050170032.  Google Scholar

[15]

J. A. Carrillo and G. Toscani, Long-time asymptotics for strong solutions of the thin film equation,, Commun. Math. Phys., 225 (2002), 551.  doi: 10.1007/s002200100591.  Google Scholar

[16]

M. Chugunova, M. Pugh and R. Taranets, Research announcement: Finite-time blow up and long-wave unstable thin film equations,, preprint, ().   Google Scholar

[17]

R. Dal Passo, H. Garcke and G. Grün, On a fourth order degenerate parabolic equation: global entropy estimates, existence, and qualitative behaviour of solutions,, SIAM J. Math. Anal., 29 (1998), 321.   Google Scholar

[18]

R. Dal Passo, L. Giacomelli and G. Grün, A waiting time phenomenon for thin film equations,, Ann. Scuola Norm. Sup. Pisa, 30 (2001), 437.   Google Scholar

[19]

R. Dal Passo, L. Giacomelli and A. Shishkov, The thin film equation with nonlinear diffusion,, Comm. Partial Differential Equations, 26 (2001), 1509.   Google Scholar

[20]

S. D. Èĭdel'man, Parabolic Systems,, Translated from the Russian by Scripta Technica, (1969).   Google Scholar

[21]

A. Friedman, Partial Differential Equations,, Holt, ().   Google Scholar

[22]

L. Giacomelli, A fourth-order degenerate parabolic equation describing thin viscous flows over an inclined plane,, Applied Mathematics Letters, 12 (1999), 107.  doi: 10.1016/S0893-9659(99)00130-5.  Google Scholar

[23]

L. Giacomelli and A. Shishkov, Propagation of support in one-dimensional convected thin-film flow,, Indiana Univ. Math. J., 54 (2005), 1181.  doi: 10.1512/iumj.2005.54.2532.  Google Scholar

[24]

G. Grün, Degenerate parabolic differential equations of fourth order and a plasticity model with nonlocal harding,, Z. Anal. Anwendungen., 14 (1995), 541.   Google Scholar

[25]

G. Grün, "On Free Boundary Problems Arising in Thin Film Flow,", Habilitation thesis, (2001).   Google Scholar

[26]

G. Grün, Droplet spreading under weak slippage: the waiting time phenomenon,, Ann. I. H. Poincaré–AN, 21 (2004), 255.  doi: 10.1016/j.ahihpc.2003.02.002.  Google Scholar

[27]

L. M. Hocking, Spreading and instability of a viscous fluid sheet,, Journal of Fluid Mechanics, 211 (1990), 373.  doi: 10.1017/S0022112090001616.  Google Scholar

[28]

J. R. King, Two generalisations of the thin film equation,, Math. Comput. Modelling, 34 (2001), 737.  doi: 10.1016/S0895-7177(01)00095-4.  Google Scholar

[29]

J. J. Li, On a fourth order degenerate parabolic equation in higher space dimensions,, Journal of Mathematical Physics, 50 (2009).  doi: 10.1063/1.3272788.  Google Scholar

[30]

X. Liu and C. Qu, Finite speed of propagation for thin viscous flows over an inclined plane,, Nonlinear Anal. Real World Appl., 13 (2012), 464.  doi: 10.1016/j.nonrwa.2011.08.003.  Google Scholar

[31]

E. Momoniata, T. G. Myers and S. Abelman, Similarity solutions of thin film flow driven by gravity and surface shear,, Nonlinear Analysis: Real World Applications, 10 (2009), 3443.  doi: 10.1016/j.nonrwa.2008.10.070.  Google Scholar

[32]

A. Oron, S. H, Davis and S. G. Bankoff, Long-scale evolution of thin liquid films,, Rev. Modern Phys., 69 (1997), 931.  doi: 10.1103/RevModPhys.69.931.  Google Scholar

[33]

E. O. Tuck and L. W. Schwaxtz, Thin static drops with a free attachment boundary,, Journal of Fluid Mechanics, 223 (1991), 313.   Google Scholar

[34]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in, (2002), 71.   Google Scholar

[1]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[2]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[5]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[8]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[9]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[10]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[11]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[12]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[13]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[14]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[15]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[16]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[17]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[18]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[19]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[20]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]