March  2014, 13(2): 605-621. doi: 10.3934/cpaa.2014.13.605

Well-posedness of abstract distributed-order fractional diffusion equations

1. 

School of Mathematics and Statistics, Ministry of Education Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an 710049, China, China, China

Received  December 2012 Revised  August 2013 Published  October 2013

In this paper, based on distributed-order fractional diffusion equation we propose the distributed-order fractional abstract Cauchy problem (DFACP) and study the well-posedness of DFACP. Using functional calculus technique, we prove that the general distributed-order fractional operator generates a bounded analytic $\alpha$-times resolvent operator family or a $C_0$-semigroup under some suitable conditions. In addition, we reveal the relation between two $\alpha$-times resolvent families generated by the sectorial operator $A$ and the special distributed-order fractional operator, $p_1A^{\beta_1}+ p_2A^{\beta_2}+\ldots +p_nA^{\beta_n}$, respectively.
Citation: Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605
References:
[1]

D. Applebaum, "Lévy Processes and Stochastic Calculus,", Cambridge University Press, (2004).  doi: 10.1017/CBO9780511755323.  Google Scholar

[2]

R. Balescu, Anomalous transport in turbulent plasmas and continuous time random walks,, Phys. Rev. E, 51 (1995), 4807.  doi: 10.1103/PhysRevE.51.4807.  Google Scholar

[3]

E. Bazhlekova, "Fractional Evolution Equations in Banach Spaces,", Ph.D thesis, (2001).   Google Scholar

[4]

Alfred. S. Carasso and T. Kato, On subordinated holomorphic semigroups,, Trans. Amer. Math. Soc., 327 (1991), 867.  doi: 10.1090/S0002-9947-1991-1018572-4.  Google Scholar

[5]

Aleksei. V. Chechkin, R. Gorenflo and Igor. M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations,, Phys. Rev. E, 66 (2002).  doi: 10.1103/PhysRevE.66.046129.  Google Scholar

[6]

C. Chen and M. Li, On fractional resolvent operator functions,, Semigroup Forum, 80 (2010), 121.  doi: 10.1007/s00233-009-9184-7.  Google Scholar

[7]

G. Dore and A. Venni, On the closedness of the sum of two closed operators,, Math. Z., 196 (1987), 189.  doi: 10.1007/BF01163654.  Google Scholar

[8]

N. Dungey, Asymptotic type for sectorial operators and an integral of fractional powers,, J. Func. Anal., 256 (2009), 1387.  doi: 10.1016/j.jfa.2008.07.020.  Google Scholar

[9]

A. Einstein, "Investigations on the Theory of the Brownian Movement,", Dover Publications Inc., (1956).   Google Scholar

[10]

R. Gorenflo and F. Mainardi, Random walk models for space-fractional diffusion processes,, Fract. Calc. Appl. Anal., 1 (1998), 167.   Google Scholar

[11]

T. Kato, "Perturbation Theory for Linear Operators,", Springer, (1966).  doi: 10.1007/978-3-642-53393-8.  Google Scholar

[12]

A. Klemm, Hans. P. Müller and R. Kimmich, NMR microscopy of pore-space backbones in rock, sponge, and sand in comparison with random percolation model objects,, Phys. Rev. E, 55 (1997), 4413.  doi: 10.1103/PhysRevE.55.4413.  Google Scholar

[13]

M. Haase, "The Functional Calculus for Sectorial Operators,", Operator Theory: Advances and Applications, (2006).  doi: 10.1007/3-7643-7698-8.  Google Scholar

[14]

M. Li, C. Chen and F. Li, On fractional powers of generators of fractional resolvent families,, J. Func. Anal., 259 (2010), 2702.  doi: 10.1016/j.jfa.2010.07.007.  Google Scholar

[15]

K. Li and J. Jia, Existence and uniqueness of mild solutions for abstract delay fractional differential equations,, Comput. Math. Appl., 63 (2011), 1398.  doi: 10.1016/j.camwa.2011.02.038.  Google Scholar

[16]

F. Mainardi, G. Pagnini and R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed order,, Appl. Math. Comput., 187 (2007), 295.  doi: 10.1016/j.amc.2006.08.126.  Google Scholar

[17]

F. Mainardi, Y. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation,, Fract. Calc. Appl. Anal., 4 (2001), 153.   Google Scholar

[18]

Rosario. N. Mantegna and Harry. E. Stanley, Stochastic process with ultraslow convergence to a gaussian: the truncated Levy flight,, Phys. Rev. Lett., 73 (1994), 2946.  doi: 10.1103/PhysRevLett.73.2946.  Google Scholar

[19]

Celso. M. Carracedo and Miguel. S. Alix, "The Theory of Fractional Powers of Operators,", North-Holland Publishing Co., (2001).   Google Scholar

[20]

Mark. M. Meerschaert and Hans. P. Scheffler, Stochastic model for ultraslow diffusion,, Stoch. Proc. Appl., 116 (2006), 1215.  doi: 10.1016/j.spa.2006.01.006.  Google Scholar

[21]

Mark. M. Meerschaert, E. Nane and P. Vellaisamy, Distributed-order fractional diffusions on bounded domains,, J. Math. Anal. Appl., 379 (2011), 216.  doi: 10.1016/j.jmaa.2010.12.056.  Google Scholar

[22]

R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[23]

Elliott. W. Montroll and George. H. Weiss, Random walks on lattices. II,, J. Math. Phys., 167 (1965), 167.  doi: 10.1063/1.1704269.  Google Scholar

[24]

M. Naber, Distributed order fractional subdiffusion,, Fractals, 12 (2004), 23.  doi: 10.1142/S0218348X04002410.  Google Scholar

[25]

I. Podlubny, "Fractional Differential Equations,", Academic Press, (1999).   Google Scholar

[26]

J. Pr$\ddotu$ss, "Evolutionary Integral Equations and Applications,", Birkh\, (1993).  doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[27]

Lewis. F. Richardson, Atmospheric diffusion shown on a distance-neighbout graph,, Proc. Roy. Soc., 110 (1926), 709.  doi: 10.1098/rspa.1926.0043.  Google Scholar

[28]

Yakov. G. Sinai, The limiting behaviour of a one-dimensional random walk in a random medium,, Theor. Prob. Appl., 27 (1982), 256.  doi: 10.1137/1127028.  Google Scholar

[29]

Igor. M. Sokolov, Aleksei. V. Chechkin and J. Klafter, Distributed-order fractional kinetics,, Acta Phys. Polon., 35 (2004), 1323.   Google Scholar

[30]

G. Zumofen and J. Klafter, Spectral random walk of a single molecule,, Chem. Phys. Lett., 219 (1994), 303.  doi: 10.1016/0009-2614(94)87062-4.  Google Scholar

show all references

References:
[1]

D. Applebaum, "Lévy Processes and Stochastic Calculus,", Cambridge University Press, (2004).  doi: 10.1017/CBO9780511755323.  Google Scholar

[2]

R. Balescu, Anomalous transport in turbulent plasmas and continuous time random walks,, Phys. Rev. E, 51 (1995), 4807.  doi: 10.1103/PhysRevE.51.4807.  Google Scholar

[3]

E. Bazhlekova, "Fractional Evolution Equations in Banach Spaces,", Ph.D thesis, (2001).   Google Scholar

[4]

Alfred. S. Carasso and T. Kato, On subordinated holomorphic semigroups,, Trans. Amer. Math. Soc., 327 (1991), 867.  doi: 10.1090/S0002-9947-1991-1018572-4.  Google Scholar

[5]

Aleksei. V. Chechkin, R. Gorenflo and Igor. M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations,, Phys. Rev. E, 66 (2002).  doi: 10.1103/PhysRevE.66.046129.  Google Scholar

[6]

C. Chen and M. Li, On fractional resolvent operator functions,, Semigroup Forum, 80 (2010), 121.  doi: 10.1007/s00233-009-9184-7.  Google Scholar

[7]

G. Dore and A. Venni, On the closedness of the sum of two closed operators,, Math. Z., 196 (1987), 189.  doi: 10.1007/BF01163654.  Google Scholar

[8]

N. Dungey, Asymptotic type for sectorial operators and an integral of fractional powers,, J. Func. Anal., 256 (2009), 1387.  doi: 10.1016/j.jfa.2008.07.020.  Google Scholar

[9]

A. Einstein, "Investigations on the Theory of the Brownian Movement,", Dover Publications Inc., (1956).   Google Scholar

[10]

R. Gorenflo and F. Mainardi, Random walk models for space-fractional diffusion processes,, Fract. Calc. Appl. Anal., 1 (1998), 167.   Google Scholar

[11]

T. Kato, "Perturbation Theory for Linear Operators,", Springer, (1966).  doi: 10.1007/978-3-642-53393-8.  Google Scholar

[12]

A. Klemm, Hans. P. Müller and R. Kimmich, NMR microscopy of pore-space backbones in rock, sponge, and sand in comparison with random percolation model objects,, Phys. Rev. E, 55 (1997), 4413.  doi: 10.1103/PhysRevE.55.4413.  Google Scholar

[13]

M. Haase, "The Functional Calculus for Sectorial Operators,", Operator Theory: Advances and Applications, (2006).  doi: 10.1007/3-7643-7698-8.  Google Scholar

[14]

M. Li, C. Chen and F. Li, On fractional powers of generators of fractional resolvent families,, J. Func. Anal., 259 (2010), 2702.  doi: 10.1016/j.jfa.2010.07.007.  Google Scholar

[15]

K. Li and J. Jia, Existence and uniqueness of mild solutions for abstract delay fractional differential equations,, Comput. Math. Appl., 63 (2011), 1398.  doi: 10.1016/j.camwa.2011.02.038.  Google Scholar

[16]

F. Mainardi, G. Pagnini and R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed order,, Appl. Math. Comput., 187 (2007), 295.  doi: 10.1016/j.amc.2006.08.126.  Google Scholar

[17]

F. Mainardi, Y. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation,, Fract. Calc. Appl. Anal., 4 (2001), 153.   Google Scholar

[18]

Rosario. N. Mantegna and Harry. E. Stanley, Stochastic process with ultraslow convergence to a gaussian: the truncated Levy flight,, Phys. Rev. Lett., 73 (1994), 2946.  doi: 10.1103/PhysRevLett.73.2946.  Google Scholar

[19]

Celso. M. Carracedo and Miguel. S. Alix, "The Theory of Fractional Powers of Operators,", North-Holland Publishing Co., (2001).   Google Scholar

[20]

Mark. M. Meerschaert and Hans. P. Scheffler, Stochastic model for ultraslow diffusion,, Stoch. Proc. Appl., 116 (2006), 1215.  doi: 10.1016/j.spa.2006.01.006.  Google Scholar

[21]

Mark. M. Meerschaert, E. Nane and P. Vellaisamy, Distributed-order fractional diffusions on bounded domains,, J. Math. Anal. Appl., 379 (2011), 216.  doi: 10.1016/j.jmaa.2010.12.056.  Google Scholar

[22]

R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[23]

Elliott. W. Montroll and George. H. Weiss, Random walks on lattices. II,, J. Math. Phys., 167 (1965), 167.  doi: 10.1063/1.1704269.  Google Scholar

[24]

M. Naber, Distributed order fractional subdiffusion,, Fractals, 12 (2004), 23.  doi: 10.1142/S0218348X04002410.  Google Scholar

[25]

I. Podlubny, "Fractional Differential Equations,", Academic Press, (1999).   Google Scholar

[26]

J. Pr$\ddotu$ss, "Evolutionary Integral Equations and Applications,", Birkh\, (1993).  doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[27]

Lewis. F. Richardson, Atmospheric diffusion shown on a distance-neighbout graph,, Proc. Roy. Soc., 110 (1926), 709.  doi: 10.1098/rspa.1926.0043.  Google Scholar

[28]

Yakov. G. Sinai, The limiting behaviour of a one-dimensional random walk in a random medium,, Theor. Prob. Appl., 27 (1982), 256.  doi: 10.1137/1127028.  Google Scholar

[29]

Igor. M. Sokolov, Aleksei. V. Chechkin and J. Klafter, Distributed-order fractional kinetics,, Acta Phys. Polon., 35 (2004), 1323.   Google Scholar

[30]

G. Zumofen and J. Klafter, Spectral random walk of a single molecule,, Chem. Phys. Lett., 219 (1994), 303.  doi: 10.1016/0009-2614(94)87062-4.  Google Scholar

[1]

Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188

[2]

Nguyen Huy Tuan, Donal O'Regan, Tran Bao Ngoc. Continuity with respect to fractional order of the time fractional diffusion-wave equation. Evolution Equations & Control Theory, 2020, 9 (3) : 773-793. doi: 10.3934/eect.2020033

[3]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[4]

Daliang Zhao, Yansheng Liu, Xiaodi Li. Controllability for a class of semilinear fractional evolution systems via resolvent operators. Communications on Pure & Applied Analysis, 2019, 18 (1) : 455-478. doi: 10.3934/cpaa.2019023

[5]

Yong Zhou, Jia Wei He. New results on controllability of fractional evolution systems with order $ \alpha\in (1,2) $. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020077

[6]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[7]

Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281

[8]

Xuewei Cui, Mei Yu. Non-existence of positive solutions for a higher order fractional equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1379-1387. doi: 10.3934/dcds.2019059

[9]

Ruy Coimbra Charão, Juan Torres Espinoza, Ryo Ikehata. A second order fractional differential equation under effects of a super damping. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4433-4454. doi: 10.3934/cpaa.2020202

[10]

Manli Song, Jinggang Tan. Hardy inequalities for the fractional powers of the Grushin operator. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4699-4726. doi: 10.3934/cpaa.2020192

[11]

Matteo Cozzi. On the variation of the fractional mean curvature under the effect of $C^{1, \alpha}$ perturbations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5769-5786. doi: 10.3934/dcds.2015.35.5769

[12]

Wenqiang Zhao. Pullback attractors for bi-spatial continuous random dynamical systems and application to stochastic fractional power dissipative equation on an unbounded domain. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3395-3438. doi: 10.3934/dcdsb.2018326

[13]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Taza Gul, Fawad Hussain. A fractional order HBV model with hospitalization. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 957-974. doi: 10.3934/dcdss.2020056

[14]

Ali Akgül. Analysis and new applications of fractal fractional differential equations with power law kernel. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020423

[15]

Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 539-560. doi: 10.3934/dcdss.2020030

[16]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[17]

Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020402

[18]

Masoumeh Hosseininia, Mohammad Hossein Heydari, Carlo Cattani. A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020295

[19]

Berat Karaagac. New exact solutions for some fractional order differential equations via improved sub-equation method. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 447-454. doi: 10.3934/dcdss.2019029

[20]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]