• Previous Article
    Boundedness of solutions for a class of impact oscillators with time-denpendent polynomial potentials
  • CPAA Home
  • This Issue
  • Next Article
    Infinitely many homoclinic solutions for damped vibration problems with subquadratic potentials
March  2014, 13(2): 635-644. doi: 10.3934/cpaa.2014.13.635

A note on the existence of global solutions for reaction-diffusion equations with almost-monotonic nonlinearities

1. 

Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Madrid 28040

2. 

Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom

Received  January 2013 Revised  September 2013 Published  October 2013

We show existence and uniqueness of global solutions for reaction-diffusion equations with almost-monotonic nonlinear terms in $L^q(\Omega)$ for each $1\leq q < \infty$. In particular, we do not assume restriction on the growth of the nonlinearites required by the standar local existence theory.
Citation: Aníbal Rodríguez-Bernal, Alejandro Vidal-López. A note on the existence of global solutions for reaction-diffusion equations with almost-monotonic nonlinearities. Communications on Pure and Applied Analysis, 2014, 13 (2) : 635-644. doi: 10.3934/cpaa.2014.13.635
References:
[1]

J. M. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodríguez-Bernal, Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains, Nonlinear Anal., 56 (2004), 515-554. doi: 10.1016/j.na.2003.09.023.

[2]

J. M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc., 63 (1977), 370-373. doi: 10.2307/2041821.

[3]

H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math., 68 (1996), 277-304. doi: 10.1007/BF02790212.

[4]

A. Carvalho, J. A. Langa and J. Robinson., "Attractors for Infinite-dimensional Non-autonomous Dynamical Systems,'' volume 182 of Applied Mathematical Sciences, Springer, New York, 2012. doi: 10.1007/978-1-4614-4581-4_1.

[5]

J. W. Cholewa and A. Rodríguez-Bernal, Extremal equilibria for dissipative parabolic equations in locally uniform spaces, Math. Models Methods Appl. Sci., 19 (2009), 1995-2037. doi: 10.1142/S0218202509004029.

[6]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,'' Volume 840 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1981.

[7]

M. Marcus and L. Véron, Initial trace of positive solutions of some nonlinear parabolic equations, Comm. Partial Differential Equations, 24 (1999), 1445-1499. doi: 10.1080/03605309908821471.

[8]

J. C. Robinson, A. Rodríguez-Bernal and A. Vidal-López, Pullback attractors and extremal complete trajectories for non-autonomous reaction-diffusion problems, J. Differ. Equations, 238 (2007), 289-337. doi: 10.1016/j.jde.2007.03.028.

[9]

A. Rodríguez-Bernal, Attractors for parabolic equations with nonlinear boundary conditions, critical exponents, and singular initial data, J. Differ. Equations, 181 (2002), 165-196. doi: 10.1006/jdeq.2001.4072.

[10]

A. Rodríguez-Bernal and A. Vidal-López, Extremal equilibria for reaction-diffusion equations in bounded domains and applications, Journal of Differential Equations, 244 (2008), 2983-3030. doi: 10.1016/j.jde.2008.02.046.

show all references

References:
[1]

J. M. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodríguez-Bernal, Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains, Nonlinear Anal., 56 (2004), 515-554. doi: 10.1016/j.na.2003.09.023.

[2]

J. M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc., 63 (1977), 370-373. doi: 10.2307/2041821.

[3]

H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math., 68 (1996), 277-304. doi: 10.1007/BF02790212.

[4]

A. Carvalho, J. A. Langa and J. Robinson., "Attractors for Infinite-dimensional Non-autonomous Dynamical Systems,'' volume 182 of Applied Mathematical Sciences, Springer, New York, 2012. doi: 10.1007/978-1-4614-4581-4_1.

[5]

J. W. Cholewa and A. Rodríguez-Bernal, Extremal equilibria for dissipative parabolic equations in locally uniform spaces, Math. Models Methods Appl. Sci., 19 (2009), 1995-2037. doi: 10.1142/S0218202509004029.

[6]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,'' Volume 840 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1981.

[7]

M. Marcus and L. Véron, Initial trace of positive solutions of some nonlinear parabolic equations, Comm. Partial Differential Equations, 24 (1999), 1445-1499. doi: 10.1080/03605309908821471.

[8]

J. C. Robinson, A. Rodríguez-Bernal and A. Vidal-López, Pullback attractors and extremal complete trajectories for non-autonomous reaction-diffusion problems, J. Differ. Equations, 238 (2007), 289-337. doi: 10.1016/j.jde.2007.03.028.

[9]

A. Rodríguez-Bernal, Attractors for parabolic equations with nonlinear boundary conditions, critical exponents, and singular initial data, J. Differ. Equations, 181 (2002), 165-196. doi: 10.1006/jdeq.2001.4072.

[10]

A. Rodríguez-Bernal and A. Vidal-López, Extremal equilibria for reaction-diffusion equations in bounded domains and applications, Journal of Differential Equations, 244 (2008), 2983-3030. doi: 10.1016/j.jde.2008.02.046.

[1]

Honglv Ma, Jin Zhang, Chengkui Zhong. Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4721-4737. doi: 10.3934/dcdsb.2019027

[2]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[3]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[4]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1301-1322. doi: 10.3934/dcdsb.2021091

[5]

Zhoude Shao. Existence and continuity of strong solutions of partly dissipative reaction diffusion systems. Conference Publications, 2011, 2011 (Special) : 1319-1328. doi: 10.3934/proc.2011.2011.1319

[6]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[7]

Pengchao Lai, Qi Li. Asymptotic behavior for the solutions to a bistable-bistable reaction diffusion equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3313-3323. doi: 10.3934/dcdsb.2021186

[8]

Jishan Fan, Shuxiang Huang, Fucai Li. Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. Kinetic and Related Models, 2017, 10 (4) : 1035-1053. doi: 10.3934/krm.2017041

[9]

Xinhua Zhao, Zilai Li. Asymptotic behavior of spherically or cylindrically symmetric solutions to the compressible Navier-Stokes equations with large initial data. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1421-1448. doi: 10.3934/cpaa.2020052

[10]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[11]

Milena Dimova, Natalia Kolkovska, Nikolai Kutev. Global behavior of the solutions to nonlinear Klein-Gordon equation with critical initial energy. Electronic Research Archive, 2020, 28 (2) : 671-689. doi: 10.3934/era.2020035

[12]

P. Blue, J. Colliander. Global well-posedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$-critical NLS. Communications on Pure and Applied Analysis, 2006, 5 (4) : 691-708. doi: 10.3934/cpaa.2006.5.691

[13]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[14]

Seung-Yeal Ha, Bingkang Huang, Qinghua Xiao, Xiongtao Zhang. A global existence of classical solutions to the two-dimensional kinetic-fluid model for flocking with large initial data. Communications on Pure and Applied Analysis, 2020, 19 (2) : 835-882. doi: 10.3934/cpaa.2020039

[15]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic and Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

[16]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[17]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. Determination of initial data for a reaction-diffusion system with variable coefficients. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 771-801. doi: 10.3934/dcds.2019032

[18]

Hongyong Cui, Peter E. Kloeden, Wenqiang Zhao. Strong $ (L^2,L^\gamma\cap H_0^1) $-continuity in initial data of nonlinear reaction-diffusion equation in any space dimension. Electronic Research Archive, 2020, 28 (3) : 1357-1374. doi: 10.3934/era.2020072

[19]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[20]

Shuichi Jimbo, Yoshihisa Morita. Asymptotic behavior of entire solutions to reaction-diffusion equations in an infinite star graph. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4013-4039. doi: 10.3934/dcds.2021026

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (1)

[Back to Top]