\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Boundedness of solutions for a class of impact oscillators with time-denpendent polynomial potentials

Abstract / Introduction Related Papers Cited by
  • In this paper, we consider the boundedness of solutions for a class of impact oscillators with time dependent polynomial potentials, \begin{eqnarray} \ddot{x}+x^{2n+1}+\sum_{i=0}^{2n}p_{i}(t)x^{i}=0, \quad for\ x(t)> 0,\\ x(t)\geq 0,\\ \dot{x}(t_{0}^{+})=-\dot{x}(t_{0}^{-}), \quad if\ x(t_{0})=0, \end{eqnarray} where $n\in N^+$, $p_i(t+1)=p_i(t)$ and $p_i(t)\in C^5(R/Z).$
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Dieckerhoff and E. Zehnder, Boundedness of solutions via the Twist Theorem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), 79-95.

    [2]

    S. Laederich and M. Levi, Invariant curves and time-dependent potentials, Ergo.Th. and Dynam. Syst., 11 (1991), 365-378.doi: 10.1017/S0143385700006192.

    [3]

    X. Yuan, Invariant tori of Duffing-type equations, Adv. in Math. (China), 24 (1995), 375-376.

    [4]

    X. Yuan, Invariant tori of Duffing-type equations, J. Differential Equations, 142 (1998), 231-162.

    [5]

    M. Kunze, "Non-Smooth Dynamical Systems," in: Lecture Notes in Math., vol.1744, Sringer-Verlag, New York, 2000.

    [6]

    H. Lamba, Chaotic, regular and unbounded behaviour in the elastic impact oscillator, Physica D, 82 (1995), 117-135.doi: 10.1016/0167-2789(94)00222-C.

    [7]

    P. Boyland, Dual billiards, twist maps and impact oscillators, Nonlinearity, 9 (1996), 1411-1438.doi: 10.1088/0951-7715/9/6/002.

    [8]

    M. Corbera and J. Llibre, Periodic orbits of a collinear restricted three body problem, Celestial Mech. Dynam. Astronom., 86 (2003), 163-183.doi: 10.1023/A:1024183003251.

    [9]

    D. Qian and P. J. Torres, Periodic motions of linear impact oscilltors via successor map, SIAM J. Math. Anal., 36 (2005), 1707-1725.doi: 10.1137/S003614100343771X.

    [10]

    D. Qian and X. Sun, Inariant tori for asymptotically linear impact oscillators, Sci. China: Ser. A Math., 49 (2006), 669-687.doi: 10.1007/s11425-006-0669-5.

    [11]

    V. Zharnitsky, Invariant tori in Hamiltonian systems with impacts, Comm. Math. Phys., 211 (2000), 289-302.doi: 10.1007/s002200050813.

    [12]

    Z. Wang and Y. Wang, Existence of quasiperiodic solutions and Littlewood's boundedness problem of super-linear impact oscillators, Applied Mathematics and Computation, 217 (2011), 6417-6425.doi: 10.1016/j.amc.2011.01.037.

    [13]

    Z. Wang, Q. Liu and D. Qian, Existence of quasiperiodic solutions and Littlewood's boundedness problem of sub-linear impact oscillators, Nonlinear Analysis, 74 (2011), 5606-5617.doi: 10.1016/j.na.2011.05.046.

    [14]

    D. Qian, Large amplitude periodic bouncing in impact oscillators with damping, Proc. Amer. Math. Soc., 133 (2005), 1797-1804.doi: 10.1090/S0002-9939-04-07759-7.

    [15]

    D. Qian and P. J. Torres, Bouncing solutions of an equation with attractive singularity, Proc. Roy. Soc. Edinburgh, 134 (2004), 201-213.doi: 10.1017/S0308210500003164.

    [16]

    Z. Wang, C. Ruan and D. Qian, Existence and multiplicity of subharmonic bouncing solutions for sub-linear impact oscillators, J. Nanjing Univ. Math. Biquart., 27 (2010), 17-30.doi: 10.3969/j.issn.0469-5097.2010.01.003.

    [17]

    R. Ortega, Boundedness in a piecewise linear oscillator and a variant of the small twist theorem, Proc. London. Math. Soc., 79 (1999), 381-413.doi: 10.1112/S0024611599012034.

    [18]

    M. Levi, Quasiperiodic motions in superquadratic time-periodic potentials, Commun. Math. Phys., 143 (1991), 43-83.doi: 10.1007/BF02100285.

    [19]

    B. Liu, Boundedness in nonlinear oscillations at resonance, J. Differential Equations, 153 (1999), 142-174.doi: 10.1006/jdeq.1998.3553.

    [20]

    L. Jiao, D. Piao and Y. Wang, Boundedness for the general semilinear Duffing equation via the twist theorem, J. Differential Equations, 252 (2012), 91-113.doi: 10.1016/j.jde.2011.09.019.

    [21]

    J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. wiss, Gottingen Math. -phys., Kl. II (1962), 1-20.

    [22]

    H. Rüssman, On the existence of invariant curves of twist mappings of an annulus, Lecture Notes Math., 1007 (1983), 677-718.doi: 10.1007/BFb0061441.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(59) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return