Citation: |
[1] |
F. Brackx, R. Delanghe and F. Sommen, "Clifford Analysis," Pitman Res. Notes in Math., 76, 1982. |
[2] |
F. Colombo, I. Sabadini and F. Sommen, The Fueter mapping theorem in integral form and the $\mathcalF$-functional calculus, Math. Methods Appl. Sci., 33 (2010), 2050-2066.doi: 10.1002/mma.1315. |
[3] |
F. Colombo, I. Sabadini and F. Sommen, The inverse Fueter mapping theorem, Commun. Pure Appl. Anal., 10 (2011), 1165-1181.doi: 10.3934/cpaa.2011.10.1165. |
[4] |
F. Colombo, I. Sabadini and F. Sommen, The inverse Fueter mapping theorem in integral form using spherical monogenics, Israel J. Math., 194 (2013), 485-505.doi: 10.1007/s11856-012-0090-4. |
[5] |
F. Colombo, I. Sabadini, F. Sommen and D. C. Struppa, "Analysis of Dirac Systems and Computational Algebra," Progress in Mathematical Physics, Vol. 39, Birkhäuser, Boston, 2004. |
[6] |
F. Colombo, I. Sabadini and D. C. Struppa, "Noncommutative Functional Calculus. Theory and Applications of Slice Hyperholomorphic Functions," Progress in Mathematics, Vol. 289, Birkhäuser, 2011. |
[7] |
A. K. Common and F. Sommen, Axial monogenic functions from holomorphic functions, J. Math. Anal. Appl., 179 (1993), 610-629.doi: 10.1006/jmaa.1993.1372. |
[8] |
R. Delanghe, F. Sommen and V. Souček, "Clifford Algebra and Spinor-valued Functions," Mathematics and Its Applications 53, Kluwer Academic Publishers, 1992. |
[9] |
R. Fueter, Die Funktionentheorie der Differentialgleichungen $\Delta u = 0$ und $\Delta\Delta u = 0$ mit vier reellen Variablen, Comm. Math. Helv., 7 (1934), 307-330. |
[10] |
J. E. Gilbert and M. A. M. Murray, "Clifford Algebras and Dirac Operators in Harmonic Analysis," Cambridge studies in advanced mathematics n. 26 (1991). |
[11] |
I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products," Academic Press LTD, Mathematics/Engineering, Sixth Edition, 2000. |
[12] |
K. Gürlebeck, K. Habetha and W. Sprößig, "Holomorphic Functions in the Plane and $n$-dimensional Space," Birkhäuser, Basel, 2008. |
[13] |
H. Hochstadt, "The functions of Mathematical Physics," Pure Appl. Math., vol 23, Wiley-Interscience, New York, 1971. |
[14] |
G. Jank and F. Sommen, Clifford analysis, biaxial symmetry and pseudoanalytic functions, Compl. Var. Theory Appl., 13 (1990), 195-212. |
[15] |
K. I. Kou, T. Qian and F. Sommen, Generalizations of Fueter's theorem, Meth. Appl. Anal., 9 (2002), 273-290. |
[16] |
D. Pena-Pena, "Cauchy-Kowalevski Extensions, Fueter's Theorems and Boundary Values of Special Systems in Clifford Analysis," PhD Dissertation, Gent (2008). |
[17] |
D. Pena-Pena, T. Qian and F. Sommen, An alternative proof of Fueter's theorem, Complex Var. Elliptic Equ., 51 (2006), 913-922.doi: 10.1080/17476930600667650. |
[18] |
T. Qian, Generalization of Fueter's result to $R^{n+1}$, Rend. Mat. Acc. Lincei, 8 (1997), 111-117. |
[19] |
T. Qian, Fourier analysis on a starlike Lipschitz aurfaces, J. Funct. Anal., 183 (2001), 370-412.doi: 10.1006/jfan.2001.3750. |
[20] |
T. Qian, Singular integrals on star-shaped Lipschitz surfaces in the quaternionic space, Math. Ann., 310 (1998), 601-630. |
[21] |
T. Qian and F. Sommen, Deriving harmonic functions in higher dimensional spaces, Zeit. Anal. Anwen., 2 (2003), 1-12. |
[22] |
M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici, Atti Acc. Lincei Rend. Fisica, 23 (1957), 220-225. |
[23] |
F. Sommen, On a generalization of Fueter's theorem, Zeit. Anal. Anwen., 19 (2000), 899-902. |