March  2014, 13(2): 657-672. doi: 10.3934/cpaa.2014.13.657

The Fueter primitive of biaxially monogenic functions

1. 

Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milano

2. 

Politecnico di Milano, Dipartimento di Matematica, Via Bonardi, 9, 20133 Milano

3. 

Clifford Research Group, Faculty of Sciences, Ghent University, Galglaan 2, 9000 Gent

Received  February 2013 Revised  July 2013 Published  October 2013

In the recent papers by F. Colombo, I. Sabadini, F. Sommen, "The inverse Fueter mapping theorem", Commun. Pure Appl. Anal., 10 (2011), 1165--1181, and "The inverse Fueter mapping theorem in integral form using spherical monogenics", Israel J. Math., 194 (2013), 485--505, the authors have started a systematic study of the inverse Fueter mapping theorem. In this paper we show that the inversion theorem holds for the case of biaxially monogenic functions. Here there are several additional difficulties with respect to the cases already treated. However, we are still able to prove an integral version of the inverse Fueter mapping theorem. The kernels appearing in the integral representation formula have an explicit representation that can be computed depending on the dimension of the Euclidean space in which the problem is considered.
Citation: Fabrizio Colombo, Irene Sabadini, Frank Sommen. The Fueter primitive of biaxially monogenic functions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 657-672. doi: 10.3934/cpaa.2014.13.657
References:
[1]

F. Brackx, R. Delanghe and F. Sommen, "Clifford Analysis,", Pitman Res. Notes in Math., (1982).   Google Scholar

[2]

F. Colombo, I. Sabadini and F. Sommen, The Fueter mapping theorem in integral form and the $\mathcalF$-functional calculus,, Math. Methods Appl. Sci., 33 (2010), 2050.  doi: 10.1002/mma.1315.  Google Scholar

[3]

F. Colombo, I. Sabadini and F. Sommen, The inverse Fueter mapping theorem,, Commun. Pure Appl. Anal., 10 (2011), 1165.  doi: 10.3934/cpaa.2011.10.1165.  Google Scholar

[4]

F. Colombo, I. Sabadini and F. Sommen, The inverse Fueter mapping theorem in integral form using spherical monogenics,, Israel J. Math., 194 (2013), 485.  doi: 10.1007/s11856-012-0090-4.  Google Scholar

[5]

F. Colombo, I. Sabadini, F. Sommen and D. C. Struppa, "Analysis of Dirac Systems and Computational Algebra,", Progress in Mathematical Physics, (2004).   Google Scholar

[6]

F. Colombo, I. Sabadini and D. C. Struppa, "Noncommutative Functional Calculus. Theory and Applications of Slice Hyperholomorphic Functions,", Progress in Mathematics, (2011).   Google Scholar

[7]

A. K. Common and F. Sommen, Axial monogenic functions from holomorphic functions,, J. Math. Anal. Appl., 179 (1993), 610.  doi: 10.1006/jmaa.1993.1372.  Google Scholar

[8]

R. Delanghe, F. Sommen and V. Souček, "Clifford Algebra and Spinor-valued Functions,", Mathematics and Its Applications 53, (1992).   Google Scholar

[9]

R. Fueter, Die Funktionentheorie der Differentialgleichungen $\Delta u = 0$ und $\Delta\Delta u = 0$ mit vier reellen Variablen,, Comm. Math. Helv., 7 (1934), 307.   Google Scholar

[10]

J. E. Gilbert and M. A. M. Murray, "Clifford Algebras and Dirac Operators in Harmonic Analysis,", Cambridge studies in advanced mathematics n. 26 (1991)., (1991).   Google Scholar

[11]

I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products,", Academic Press LTD, (2000).   Google Scholar

[12]

K. Gürlebeck, K. Habetha and W. Sprößig, "Holomorphic Functions in the Plane and $n$-dimensional Space,", Birkh\, (2008).   Google Scholar

[13]

H. Hochstadt, "The functions of Mathematical Physics,", Pure Appl. Math., (1971).   Google Scholar

[14]

G. Jank and F. Sommen, Clifford analysis, biaxial symmetry and pseudoanalytic functions,, Compl. Var. Theory Appl., 13 (1990), 195.   Google Scholar

[15]

K. I. Kou, T. Qian and F. Sommen, Generalizations of Fueter's theorem,, Meth. Appl. Anal., 9 (2002), 273.   Google Scholar

[16]

D. Pena-Pena, "Cauchy-Kowalevski Extensions, Fueter's Theorems and Boundary Values of Special Systems in Clifford Analysis,", PhD Dissertation, (2008).   Google Scholar

[17]

D. Pena-Pena, T. Qian and F. Sommen, An alternative proof of Fueter's theorem,, Complex Var. Elliptic Equ., 51 (2006), 913.  doi: 10.1080/17476930600667650.  Google Scholar

[18]

T. Qian, Generalization of Fueter's result to $R^{n+1}$,, Rend. Mat. Acc. Lincei, 8 (1997), 111.   Google Scholar

[19]

T. Qian, Fourier analysis on a starlike Lipschitz aurfaces,, J. Funct. Anal., 183 (2001), 370.  doi: 10.1006/jfan.2001.3750.  Google Scholar

[20]

T. Qian, Singular integrals on star-shaped Lipschitz surfaces in the quaternionic space,, Math. Ann., 310 (1998), 601.   Google Scholar

[21]

T. Qian and F. Sommen, Deriving harmonic functions in higher dimensional spaces,, Zeit. Anal. Anwen., 2 (2003), 1.   Google Scholar

[22]

M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici,, Atti Acc. Lincei Rend. Fisica, 23 (1957), 220.   Google Scholar

[23]

F. Sommen, On a generalization of Fueter's theorem,, Zeit. Anal. Anwen., 19 (2000), 899.   Google Scholar

show all references

References:
[1]

F. Brackx, R. Delanghe and F. Sommen, "Clifford Analysis,", Pitman Res. Notes in Math., (1982).   Google Scholar

[2]

F. Colombo, I. Sabadini and F. Sommen, The Fueter mapping theorem in integral form and the $\mathcalF$-functional calculus,, Math. Methods Appl. Sci., 33 (2010), 2050.  doi: 10.1002/mma.1315.  Google Scholar

[3]

F. Colombo, I. Sabadini and F. Sommen, The inverse Fueter mapping theorem,, Commun. Pure Appl. Anal., 10 (2011), 1165.  doi: 10.3934/cpaa.2011.10.1165.  Google Scholar

[4]

F. Colombo, I. Sabadini and F. Sommen, The inverse Fueter mapping theorem in integral form using spherical monogenics,, Israel J. Math., 194 (2013), 485.  doi: 10.1007/s11856-012-0090-4.  Google Scholar

[5]

F. Colombo, I. Sabadini, F. Sommen and D. C. Struppa, "Analysis of Dirac Systems and Computational Algebra,", Progress in Mathematical Physics, (2004).   Google Scholar

[6]

F. Colombo, I. Sabadini and D. C. Struppa, "Noncommutative Functional Calculus. Theory and Applications of Slice Hyperholomorphic Functions,", Progress in Mathematics, (2011).   Google Scholar

[7]

A. K. Common and F. Sommen, Axial monogenic functions from holomorphic functions,, J. Math. Anal. Appl., 179 (1993), 610.  doi: 10.1006/jmaa.1993.1372.  Google Scholar

[8]

R. Delanghe, F. Sommen and V. Souček, "Clifford Algebra and Spinor-valued Functions,", Mathematics and Its Applications 53, (1992).   Google Scholar

[9]

R. Fueter, Die Funktionentheorie der Differentialgleichungen $\Delta u = 0$ und $\Delta\Delta u = 0$ mit vier reellen Variablen,, Comm. Math. Helv., 7 (1934), 307.   Google Scholar

[10]

J. E. Gilbert and M. A. M. Murray, "Clifford Algebras and Dirac Operators in Harmonic Analysis,", Cambridge studies in advanced mathematics n. 26 (1991)., (1991).   Google Scholar

[11]

I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products,", Academic Press LTD, (2000).   Google Scholar

[12]

K. Gürlebeck, K. Habetha and W. Sprößig, "Holomorphic Functions in the Plane and $n$-dimensional Space,", Birkh\, (2008).   Google Scholar

[13]

H. Hochstadt, "The functions of Mathematical Physics,", Pure Appl. Math., (1971).   Google Scholar

[14]

G. Jank and F. Sommen, Clifford analysis, biaxial symmetry and pseudoanalytic functions,, Compl. Var. Theory Appl., 13 (1990), 195.   Google Scholar

[15]

K. I. Kou, T. Qian and F. Sommen, Generalizations of Fueter's theorem,, Meth. Appl. Anal., 9 (2002), 273.   Google Scholar

[16]

D. Pena-Pena, "Cauchy-Kowalevski Extensions, Fueter's Theorems and Boundary Values of Special Systems in Clifford Analysis,", PhD Dissertation, (2008).   Google Scholar

[17]

D. Pena-Pena, T. Qian and F. Sommen, An alternative proof of Fueter's theorem,, Complex Var. Elliptic Equ., 51 (2006), 913.  doi: 10.1080/17476930600667650.  Google Scholar

[18]

T. Qian, Generalization of Fueter's result to $R^{n+1}$,, Rend. Mat. Acc. Lincei, 8 (1997), 111.   Google Scholar

[19]

T. Qian, Fourier analysis on a starlike Lipschitz aurfaces,, J. Funct. Anal., 183 (2001), 370.  doi: 10.1006/jfan.2001.3750.  Google Scholar

[20]

T. Qian, Singular integrals on star-shaped Lipschitz surfaces in the quaternionic space,, Math. Ann., 310 (1998), 601.   Google Scholar

[21]

T. Qian and F. Sommen, Deriving harmonic functions in higher dimensional spaces,, Zeit. Anal. Anwen., 2 (2003), 1.   Google Scholar

[22]

M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici,, Atti Acc. Lincei Rend. Fisica, 23 (1957), 220.   Google Scholar

[23]

F. Sommen, On a generalization of Fueter's theorem,, Zeit. Anal. Anwen., 19 (2000), 899.   Google Scholar

[1]

Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165

[2]

Minoru Murai, Waichiro Matsumoto, Shoji Yotsutani. Representation formula for the plane closed elastic curves. Conference Publications, 2013, 2013 (special) : 565-585. doi: 10.3934/proc.2013.2013.565

[3]

Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7

[4]

Joshua Du, Jun Ji. An integral representation of the determinant of a matrix and its applications. Conference Publications, 2005, 2005 (Special) : 225-232. doi: 10.3934/proc.2005.2005.225

[5]

Gregory Beylkin, Lucas Monzón. Efficient representation and accurate evaluation of oscillatory integrals and functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4077-4100. doi: 10.3934/dcds.2016.36.4077

[6]

Qiang Li. A kind of generalized transversality theorem for $C^r$ mapping with parameter. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1043-1050. doi: 10.3934/dcdss.2017055

[7]

Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179

[8]

Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549

[9]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[10]

Pavel Krejčí, Harbir Lamba, Sergey Melnik, Dmitrii Rachinskii. Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2949-2965. doi: 10.3934/dcdsb.2015.20.2949

[11]

David M. McClendon. An Ambrose-Kakutani representation theorem for countable-to-1 semiflows. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 251-268. doi: 10.3934/dcdss.2009.2.251

[12]

Paul Deuring, Stanislav Kračmar, Šárka Nečasová. A representation formula for linearized stationary incompressible viscous flows around rotating and translating bodies. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 237-253. doi: 10.3934/dcdss.2010.3.237

[13]

Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878

[14]

Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155

[15]

Jagannathan Gomatam, Isobel McFarlane. Generalisation of the Mandelbrot set to integral functions of quaternions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 107-116. doi: 10.3934/dcds.1999.5.107

[16]

Piotr Fijałkowski. A global inversion theorem for functions with singular points. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 173-180. doi: 10.3934/dcdsb.2018011

[17]

Miklós Horváth. Spectral shift functions in the fixed energy inverse scattering. Inverse Problems & Imaging, 2011, 5 (4) : 843-858. doi: 10.3934/ipi.2011.5.843

[18]

Vladimir V. Kisil. Mobius transformations and monogenic functional calculus. Electronic Research Announcements, 1996, 2: 26-33.

[19]

Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511

[20]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]