[1]
|
P. d'Ancona, D. Foschi and S. Selberg, Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, Journal of the EMS, 9 (2007), 877-898.
|
[2]
|
P. d'Ancona, D. Foschi and S. Selberg, Local well-posedness below the charge norm for the Dirac-Klein-Gordon system in two space dimensions, Journal Hyperbolic Diff. Equations, 4 (2007), 295-330.
|
[3]
|
T. Candy, Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations, 16 (2011), 643-666.
|
[4]
|
V. Delgado, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension, Proc. AMS, 69 (1978), 289-296.
|
[5]
|
M. Escobedo and L. Vega, A semilinear Dirac equation in $H^s(R^3)$ for $s>1$, SIAM J. Math. Anal., 28 (1997), 338-362.
|
[6]
|
R. Finkelstein, C. Fronsdal and P. Kaus, Nonlinear spinor field, Phys. Rev., 103 (1956), 1571-1579.
|
[7]
|
R. Finkelstein, R. LeLevier and M. Ruderman, Nonlinear spinor fields, Phys. Rev., 83 (1951), 326-333.
|
[8]
|
D. Foschi and S. Klainerman, Homogeneous $L^2$ bilinear estimates for wave equations, Ann. Scient. ENS $4^e$ serie, 23 (2000), 211-274.
|
[9]
|
J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Analysis, 133 (1995), 50-68.
|
[10]
|
D. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D, 10 (1974), 3235-3253.
|
[11]
|
A. Grünrock and H. Pecher, Global solutions for the Dirac-Klein-Gordon system in two space dimensions, Comm. Partial Differential Equations, 35 (2010), 89-112.
|
[12]
|
S. Machihara, M. Nakamura, K. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation, J. Funct. Anal., 219 (2005), 1-20.
|
[13]
|
S. Machihara, K. Nakanishi and T. Ozawa, Small global solutions and the relativistic limit for the nonlinear Dirac equation, Rev. Math. Iberoamericana, 19 (2003), 179-194.
|
[14]
|
S. Selberg, "Multilinear Spacetime Estimates and Applications to Local Existence Theory for Nonlinear Wave Equations," Ph.D. thesis, Princeton Univ., 1999.
|
[15]
|
S. Selberg and A. Tesfahun, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Diff. Int. Equ., 23 (2010), 265-278.
|
[16]
|
M. Soler, Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, 1 (1970), 2766-2769.
|
[17]
|
W.E. Thirring, A soluble relativistic field theory, Ann. Physics, 3 (1958), 91-112.
|