-
Previous Article
Formal equivalence between normal forms of reversible and hamiltonian dynamical systems
- CPAA Home
- This Issue
-
Next Article
Local well-posedness for the nonlinear Dirac equation in two space dimensions
Topological conjugacies and behavior at infinity
1. | Departamento de Matemática, Instituto Superior Técnico, UTL, 1049-001 Lisboa |
2. | Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa |
References:
[1] |
L. Barreira and C. Valls, Stable manifolds for nonautonomous equations without exponential dichotomy,, J. Differential Equations, 221 (2006), 58.
|
[2] |
L. Barreira and C. Valls, Nonuniform exponential dichotomies and Lyapunov regularity,, J. Dynam. Differential Equations, 19 (2007), 215.
|
[3] |
G. Belickiĭ, Functional equations, and conjugacy of local diffeomorphisms of finite smoothness class,, Functional Anal. Appl., 7 (1973), 268.
|
[4] |
G. Belickiĭ, Equivalence and normal forms of germs of smooth mappings,, Russian Math. Surveys, 33 (1978), 107.
|
[5] |
D. Grobman, Homeomorphism of systems of differential equations,, Dokl. Akad. Nauk SSSR, 128 (1959), 880.
|
[6] |
D. Grobman, Topological classification of neighborhoods of a singularity in $n$-space,, Mat. Sb. (N.S.), 56 (1962), 77.
|
[7] |
P. Hartman, A lemma in the theory of structural stability of differential equations,, Proc. Amer. Math. Soc., 11 (1960), 610.
|
[8] |
P. Hartman, On the local linearization of differential equations,, Proc. Amer. Math. Soc., 14 (1963), 568.
|
[9] |
P. McSwiggen, A geometric characterization of smooth linearizability,, Michigan Math. J., 43 (1996), 321.
|
[10] |
J. Palis, On the local structure of hyperbolic points in Banach spaces,, An. Acad. Brasil. Ci., 40 (1968), 263.
|
[11] |
K. Palmer, A generalization of Hartman's linearization theorem,, J. Math. Anal. Appl., 41 (1973), 753.
|
[12] |
C. Pugh, On a theorem of P. Hartman,, Amer. J. Math., 91 (1969), 363.
|
[13] |
G. Sell, Smooth linearization near a fixed point,, Amer. J. Math., 107 (1985), 1035.
|
[14] |
S. Sternberg, Local contractions and a theorem of Poincaré,, Amer. J. Math., 79 (1957), 809.
|
[15] |
S. Sternberg, On the structure of local homeomorphisms of euclidean $n$-space. II.,, Amer. J. Math., 80 (1958), 623.
|
show all references
References:
[1] |
L. Barreira and C. Valls, Stable manifolds for nonautonomous equations without exponential dichotomy,, J. Differential Equations, 221 (2006), 58.
|
[2] |
L. Barreira and C. Valls, Nonuniform exponential dichotomies and Lyapunov regularity,, J. Dynam. Differential Equations, 19 (2007), 215.
|
[3] |
G. Belickiĭ, Functional equations, and conjugacy of local diffeomorphisms of finite smoothness class,, Functional Anal. Appl., 7 (1973), 268.
|
[4] |
G. Belickiĭ, Equivalence and normal forms of germs of smooth mappings,, Russian Math. Surveys, 33 (1978), 107.
|
[5] |
D. Grobman, Homeomorphism of systems of differential equations,, Dokl. Akad. Nauk SSSR, 128 (1959), 880.
|
[6] |
D. Grobman, Topological classification of neighborhoods of a singularity in $n$-space,, Mat. Sb. (N.S.), 56 (1962), 77.
|
[7] |
P. Hartman, A lemma in the theory of structural stability of differential equations,, Proc. Amer. Math. Soc., 11 (1960), 610.
|
[8] |
P. Hartman, On the local linearization of differential equations,, Proc. Amer. Math. Soc., 14 (1963), 568.
|
[9] |
P. McSwiggen, A geometric characterization of smooth linearizability,, Michigan Math. J., 43 (1996), 321.
|
[10] |
J. Palis, On the local structure of hyperbolic points in Banach spaces,, An. Acad. Brasil. Ci., 40 (1968), 263.
|
[11] |
K. Palmer, A generalization of Hartman's linearization theorem,, J. Math. Anal. Appl., 41 (1973), 753.
|
[12] |
C. Pugh, On a theorem of P. Hartman,, Amer. J. Math., 91 (1969), 363.
|
[13] |
G. Sell, Smooth linearization near a fixed point,, Amer. J. Math., 107 (1985), 1035.
|
[14] |
S. Sternberg, Local contractions and a theorem of Poincaré,, Amer. J. Math., 79 (1957), 809.
|
[15] |
S. Sternberg, On the structure of local homeomorphisms of euclidean $n$-space. II.,, Amer. J. Math., 80 (1958), 623.
|
[1] |
Luis Barreira, Liviu Horia Popescu, Claudia Valls. Generalized exponential behavior and topological equivalence. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3023-3042. doi: 10.3934/dcdsb.2017161 |
[2] |
Andrea Malchiodi. Topological methods for an elliptic equation with exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 277-294. doi: 10.3934/dcds.2008.21.277 |
[3] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[4] |
Boris Kalinin, Victoria Sadovskaya. Normal forms for non-uniform contractions. Journal of Modern Dynamics, 2017, 11: 341-368. doi: 10.3934/jmd.2017014 |
[5] |
Erdal Karapınar, Abdon Atangana, Andreea Fulga. Pata type contractions involving rational expressions with an application to integral equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020420 |
[6] |
Alexander Gorodnik, Theron Hitchman, Ralf Spatzier. Regularity of conjugacies of algebraic actions of Zariski-dense groups. Journal of Modern Dynamics, 2008, 2 (3) : 509-540. doi: 10.3934/jmd.2008.2.509 |
[7] |
Chris Good, Sergio Macías. What is topological about topological dynamics?. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1007-1031. doi: 10.3934/dcds.2018043 |
[8] |
Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545 |
[9] |
Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547 |
[10] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[11] |
Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555 |
[12] |
Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363 |
[13] |
Yonghui Zhou, Jian Yu, Long Wang. Topological essentiality in infinite games. Journal of Industrial & Management Optimization, 2012, 8 (1) : 179-187. doi: 10.3934/jimo.2012.8.179 |
[14] |
Magdalena Czubak, Robert L. Jerrard. Topological defects in the abelian Higgs model. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1933-1968. doi: 10.3934/dcds.2015.35.1933 |
[15] |
David Jerison, Nikola Kamburov. Free boundaries subject to topological constraints. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7213-7248. doi: 10.3934/dcds.2019301 |
[16] |
John Banks, Brett Stanley. A note on equivalent definitions of topological transitivity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1293-1296. doi: 10.3934/dcds.2013.33.1293 |
[17] |
John Banks. Topological mapping properties defined by digraphs. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 83-92. doi: 10.3934/dcds.1999.5.83 |
[18] |
Marcelo Sobottka. Topological quasi-group shifts. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 77-93. doi: 10.3934/dcds.2007.17.77 |
[19] |
Nikita Selinger. Topological characterization of canonical Thurston obstructions. Journal of Modern Dynamics, 2013, 7 (1) : 99-117. doi: 10.3934/jmd.2013.7.99 |
[20] |
C. Alonso-González, M. I. Camacho, F. Cano. Topological classification of multiple saddle connections. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 395-414. doi: 10.3934/dcds.2006.15.395 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]