March  2014, 13(2): 703-713. doi: 10.3934/cpaa.2014.13.703

Formal equivalence between normal forms of reversible and hamiltonian dynamical systems

1. 

Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, 13083–859 Campinas, SP

Received  March 2013 Revised  August 2013 Published  October 2013

We show the existence of formal equivalences between $2n$-dimensional reversible and Hamiltonian vector fields. The main tool we employ is the normal form theory.
Citation: Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure & Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703
References:
[1]

R. Abraham and J. Marsden, "Foundations of Mechanics,", Benjamin Cummings, (1978).   Google Scholar

[2]

F. Antoneli, P. H. Baptistelli, A. P. Dias and M. Manoel, Invariant theory and reversible-equivariant vector fields,, J. Pure Appl. Algebra, 213 (2009), 649.  doi: 10.1016/j.jpaa.2008.08.002.  Google Scholar

[3]

V. I. Arnold, "Arnold's Problems,", Springer-Verlag, (2004).   Google Scholar

[4]

V. I. Arnold, "Geometrical Methods in the Theory of Ordinary Differential Equations,", Fundamental Principles of Mathematical Sciences {\bf 250}. Springer-Verlag, 250 (1998).   Google Scholar

[5]

G. D. Birkhoff, Dynamical systems with two degrees of freedom,, Trans. Amer. Math. Soc., 18 (1917), 199.  doi: 10.1090/S0002-9947-1917-1501070-3.  Google Scholar

[6]

R. L. Devaney, Reversible diffeomorphisms and flows,, Trans. Amer. Math. Soc., 218 (1976), 89.  doi: 10.1090/S0002-9947-1976-0402815-3.  Google Scholar

[7]

G. Gaeta, Normal forms of reversible dynamical systems,, International Journal of Theoretical Physics, 33 (1994), 1917.  doi: 10.1007/BF00671033.  Google Scholar

[8]

A. Jacquemard, M. F. S. Lima and M. A. Teixeira, Degenerate resonances and branching of periodic orbits,, Annali di Matematica Pura ed Applicata, 187 (2008), 105.  doi: 10.1007/s10231-006-0036-8.  Google Scholar

[9]

R. M. Martins and M. A. Teixeira, On the Similarity of Hamiltonian and reversible vector fields in 4D,, Communications on Pure and Applied Analysis, 10 (2011), 1257.  doi: 10.3934/cpaa.2011.10.1257.  Google Scholar

[10]

R. M. Martins and M. A. Teixeira, Reversible-equivariant systems and matricial equations,, Anais da Academia Brasileira de Ci\^encias, 83 (2011), 1.  doi: 10.1590/S0001-37652011000200003.  Google Scholar

[11]

J. C. van der Meer, "The Hamiltonian Hopf Bifurcation,", Lecture Notes in Mathematics, 1160 (1982).   Google Scholar

[12]

J. C. van der Meer, J. A. Sanders and A. Vanderbauwhede, "Hamiltonian Structure of the Reversible Nonsemisimple 1:1 Resonance,", Dynamics, (1994).   Google Scholar

[13]

G. B. Price, On reversible dynamical systems,, Trans. Amer. Math. Soc., 37 (1935), 51.  doi: 10.1090/S0002-9947-1935-1501778-0.  Google Scholar

[14]

M. B. Sevryuk, The finite-dimensional reversible KAM theory,, Phys. D, 112 (1935), 132.  doi: 10.1016/S0167-2789(97)00207-8.  Google Scholar

[15]

M. A. Teixeira, Singularities of reversible vector fields,, Phys. D, 100 (1997), 101.  doi: 10.1016/S0167-2789(96)00183-2.  Google Scholar

show all references

References:
[1]

R. Abraham and J. Marsden, "Foundations of Mechanics,", Benjamin Cummings, (1978).   Google Scholar

[2]

F. Antoneli, P. H. Baptistelli, A. P. Dias and M. Manoel, Invariant theory and reversible-equivariant vector fields,, J. Pure Appl. Algebra, 213 (2009), 649.  doi: 10.1016/j.jpaa.2008.08.002.  Google Scholar

[3]

V. I. Arnold, "Arnold's Problems,", Springer-Verlag, (2004).   Google Scholar

[4]

V. I. Arnold, "Geometrical Methods in the Theory of Ordinary Differential Equations,", Fundamental Principles of Mathematical Sciences {\bf 250}. Springer-Verlag, 250 (1998).   Google Scholar

[5]

G. D. Birkhoff, Dynamical systems with two degrees of freedom,, Trans. Amer. Math. Soc., 18 (1917), 199.  doi: 10.1090/S0002-9947-1917-1501070-3.  Google Scholar

[6]

R. L. Devaney, Reversible diffeomorphisms and flows,, Trans. Amer. Math. Soc., 218 (1976), 89.  doi: 10.1090/S0002-9947-1976-0402815-3.  Google Scholar

[7]

G. Gaeta, Normal forms of reversible dynamical systems,, International Journal of Theoretical Physics, 33 (1994), 1917.  doi: 10.1007/BF00671033.  Google Scholar

[8]

A. Jacquemard, M. F. S. Lima and M. A. Teixeira, Degenerate resonances and branching of periodic orbits,, Annali di Matematica Pura ed Applicata, 187 (2008), 105.  doi: 10.1007/s10231-006-0036-8.  Google Scholar

[9]

R. M. Martins and M. A. Teixeira, On the Similarity of Hamiltonian and reversible vector fields in 4D,, Communications on Pure and Applied Analysis, 10 (2011), 1257.  doi: 10.3934/cpaa.2011.10.1257.  Google Scholar

[10]

R. M. Martins and M. A. Teixeira, Reversible-equivariant systems and matricial equations,, Anais da Academia Brasileira de Ci\^encias, 83 (2011), 1.  doi: 10.1590/S0001-37652011000200003.  Google Scholar

[11]

J. C. van der Meer, "The Hamiltonian Hopf Bifurcation,", Lecture Notes in Mathematics, 1160 (1982).   Google Scholar

[12]

J. C. van der Meer, J. A. Sanders and A. Vanderbauwhede, "Hamiltonian Structure of the Reversible Nonsemisimple 1:1 Resonance,", Dynamics, (1994).   Google Scholar

[13]

G. B. Price, On reversible dynamical systems,, Trans. Amer. Math. Soc., 37 (1935), 51.  doi: 10.1090/S0002-9947-1935-1501778-0.  Google Scholar

[14]

M. B. Sevryuk, The finite-dimensional reversible KAM theory,, Phys. D, 112 (1935), 132.  doi: 10.1016/S0167-2789(97)00207-8.  Google Scholar

[15]

M. A. Teixeira, Singularities of reversible vector fields,, Phys. D, 100 (1997), 101.  doi: 10.1016/S0167-2789(96)00183-2.  Google Scholar

[1]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[2]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[3]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[4]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[5]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[6]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[7]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[8]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[9]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[10]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[11]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[12]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[13]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[14]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[15]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[16]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[17]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[18]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[19]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[20]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]