\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Formal equivalence between normal forms of reversible and hamiltonian dynamical systems

Abstract / Introduction Related Papers Cited by
  • We show the existence of formal equivalences between $2n$-dimensional reversible and Hamiltonian vector fields. The main tool we employ is the normal form theory.
    Mathematics Subject Classification: Primary: 34C14, 34C20; Secondary: 37J15, 37J40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Abraham and J. Marsden, "Foundations of Mechanics," Benjamin Cummings, London, 1978.

    [2]

    F. Antoneli, P. H. Baptistelli, A. P. Dias and M. Manoel, Invariant theory and reversible-equivariant vector fields, J. Pure Appl. Algebra, 213 (2009), 649-663.doi: 10.1016/j.jpaa.2008.08.002.

    [3]

    V. I. Arnold, "Arnold's Problems," Springer-Verlag, Berlin, 2004.

    [4]

    V. I. Arnold, "Geometrical Methods in the Theory of Ordinary Differential Equations," Fundamental Principles of Mathematical Sciences 250. Springer-Verlag, 1998.

    [5]

    G. D. Birkhoff, Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc., 18 (1917), 199-300.doi: 10.1090/S0002-9947-1917-1501070-3.

    [6]

    R. L. Devaney, Reversible diffeomorphisms and flows, Trans. Amer. Math. Soc., 218 (1976), 89-113.doi: 10.1090/S0002-9947-1976-0402815-3.

    [7]

    G. Gaeta, Normal forms of reversible dynamical systems, International Journal of Theoretical Physics, 33 (1994), 1917-1928.doi: 10.1007/BF00671033.

    [8]

    A. Jacquemard, M. F. S. Lima and M. A. Teixeira, Degenerate resonances and branching of periodic orbits, Annali di Matematica Pura ed Applicata, 187 (2008), 105-117.doi: 10.1007/s10231-006-0036-8.

    [9]

    R. M. Martins and M. A. Teixeira, On the Similarity of Hamiltonian and reversible vector fields in 4D, Communications on Pure and Applied Analysis, 10 (2011), 1257-1266.doi: 10.3934/cpaa.2011.10.1257.

    [10]

    R. M. Martins and M. A. Teixeira, Reversible-equivariant systems and matricial equations, Anais da Academia Brasileira de Ciências, 83 (2011), 1-16.doi: 10.1590/S0001-37652011000200003.

    [11]

    J. C. van der Meer, "The Hamiltonian Hopf Bifurcation," Lecture Notes in Mathematics, 1160, Springer Berlin, 1982.

    [12]

    J. C. van der Meer, J. A. Sanders and A. Vanderbauwhede, "Hamiltonian Structure of the Reversible Nonsemisimple 1:1 Resonance," Dynamics, Bifurcation and Symmetry: New Trends and New Tools, Kluwer Academic Publishers, 1994.

    [13]

    G. B. Price, On reversible dynamical systems, Trans. Amer. Math. Soc., 37 (1935), 51-79.doi: 10.1090/S0002-9947-1935-1501778-0.

    [14]

    M. B. Sevryuk, The finite-dimensional reversible KAM theory, Phys. D, 112 (1935), 132-147.doi: 10.1016/S0167-2789(97)00207-8.

    [15]

    M. A. Teixeira, Singularities of reversible vector fields, Phys. D, 100 (1997), 101-118.doi: 10.1016/S0167-2789(96)00183-2.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return