March  2014, 13(2): 729-771. doi: 10.3934/cpaa.2014.13.729

Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations

1. 

Dipartimento di Ingegneria Civile, Università di Udine, via delle Scienze 208, 33100 Udine, Italy

2. 

Università degli, Studi di Torino and Collegio Carlo Alberto, Department of Statistics and Economics, Corso Unione Sovietica, 218/bis,, 10134 Torino, Italy

3. 

Université de Franche–Comté, Laboratoire de Mathématiques, CNRS UMR 6623, 16, route de Gray, 25030 Besançon Cedex

Received  March 2013 Revised  August 2013 Published  October 2013

We provide a honesty theory of substochastic evolution families in real abstract state space, extending to an non-autonomous setting the result obtained for $C_0$-semigroups in our recent contribution [On perturbed substochastic semigroups in abstract state spaces, Z. Anal. Anwend. 30, 457--495, 2011]. The link with the honesty theory of perturbed substochastic semigroups is established. Application to non-autonomous linear Boltzmann equation is provided.
Citation: Luisa Arlotti, Bertrand Lods, Mustapha Mokhtar-Kharroubi. Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 729-771. doi: 10.3934/cpaa.2014.13.729
References:
[1]

L. Arlotti, The Cauchy problem for the linear Maxwell-Bolztmann equation,, J. Differential Equations, 69 (1987), 166. doi: 10.1016/0022-0396(87)90115-X. Google Scholar

[2]

L. Arlotti, A perturbation theorem for positive contraction semigroups on $L^1$-spaces with applications to transport equation and Kolmogorov's differential equations,, Acta Appl. Math., {23 (1991), 129. doi: 10.1007/BF00048802. Google Scholar

[3]

L. Arlotti and J. Banasiak, Strictly substochastic semigroups with application to conservative and shattering solution to fragmentation equation with mass loss,, J. Math. Anal. Appl., {293 (2004), 673. doi: 10.1016/j.jmaa.2004.01.028. Google Scholar

[4]

L. Arlotti and J. Banasiak, Nonautonomous fragmentation equation via evolution semigroups,, Math. Meth. Appl. Sci., 33 (2010), 1201. doi: 10.1002/mma.1282. Google Scholar

[5]

L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, On perturbed substochastic semigroups in abstract state spaces,, Z. Anal. Anwend., 30 (2011), 457. doi: 0.4171/ZAA/1444. Google Scholar

[6]

L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations,, preprint, (2013). Google Scholar

[7]

J. Banasiak and M. Lachowicz, Around the Kato generation theorem for semigroups,, Studia Math, 179 (2007), 217. doi: 10.4064/sm179-3-2. Google Scholar

[8]

J. Banasiak, Positivity in natural sciences,, in, (2008), 1. Google Scholar

[9]

C. J. Batty and D. W. Robinson, Positive one-parameter semigroups on ordered Banach spaces,, Acta Appl. Math., 1 (1984), 221. doi: 10.1007/BF02280855. Google Scholar

[10]

C. Chicone and Yu. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations,", Mathematical surveys and monographs 70, (1999). Google Scholar

[11]

E. B. Davies, "Quantum Theory of Open Systems,", Academic Press, (1976). Google Scholar

[12]

E. B. Davies, Quantum dynamical semigroups and the neutron diffusion equation,, Rep. Math. Phys., 11 (1977), 169. doi: 10.1016/0034-4877(77)90059-3. Google Scholar

[13]

K. J. Engel and R. Nagel, "One-parameter Semigroups for Linear Evolution Equations,", Springer, (2000). Google Scholar

[14]

G. Frosali, C. van der Mee and F. Mugelli, A characterization theorem for the evolution semigroup generated by the sum of two unbounded operators,, Math. Meth. Appl. Sci., 27 (2004), 669. doi: 10.1002/mma.495. Google Scholar

[15]

A. Gulisashvili and J. A. van Casteren, "Non-autonomous Kato Classes and Feynman-Kac Propagators,", World Scientific, (2006). Google Scholar

[16]

T. Kato, On the semi-groups generated by Kolmogoroff's differential equations,, J. Math. Soc. Jap., 6 (1954), 1. doi: 10.2969/jmsj/00610001. Google Scholar

[17]

V. Liskevich, H. Vogt and J. Voigt, Gaussian bounds for propagators perturbed by potentials,, J. Funct. Anal., 238 (2006), 245. doi: 10.1016/j.jfa.2006.04.010. Google Scholar

[18]

M. Mokhtar-Kharroubi, On perturbed positive $C_0$-semigroups on the Banach space of trace class operators,, Infinite Dim. Anal. Quant. Prob. Related Topics, 11 (2008), 1. doi: 10.1142/S0219025708003130. Google Scholar

[19]

M. Mokhtar-Kharroubi and J. Voigt, On honesty of perturbed substochastic $C_0$-semigroups in $L^1$-spaces,, J. Operator Th, 64 (2010), 101. Google Scholar

[20]

M. Mokhtar-Kharroubi, New generation theorems in transport theory,, Afr. Mat., 22 (2011), 153. doi: 10.1007/s13370-011-0014-1. Google Scholar

[21]

S. Monniaux and A. Rhandi, Semigroup methods to solve non-autonomous evolution equations,, Semigroup Forum, 60 (2000), 122. doi: 10.1007/s002330010006. Google Scholar

[22]

B. de Pagter, Ordered Banach spaces,, in, (1987), 265. Google Scholar

[23]

F. Räbiger, A. Rhandi and R. Schnaubelt, Perturbation and an abstract characterization of evolution semigroups,, J. Math. Anal. Appl., 198 (1996), 516. doi: 10.1006/jmaa.1996.0096. Google Scholar

[24]

F. Räbiger, R. Schnaubelt, A. Rhandi and J. Voigt, Non-autonomous Miyadera perturbations,, Differential Integral Equations, 13 (2000), 341. Google Scholar

[25]

H. Thieme and J. Voigt, Stochastic semigroups: their construction by perturbation and approximation,, in, (2006), 135. Google Scholar

[26]

C. van der Mee, Time-dependent kinetic equations with collision terms relatively bounded with respect to the collision frequency,, Transport Theory and Statistical Physics, 30 (2001), 63. doi: 10.1081/TT-100104455. Google Scholar

[27]

J. Voigt, On the perturbation theory for strongly continuous semigroups,, Math. Ann., 229 (1977), 163. doi: 10.1007/BF01351602. Google Scholar

[28]

J. Voigt, "Functional Analytic Treatment of the Initial Boundary Value Problem for Collisionless Gases,", Habilitationsschrift, (1981). Google Scholar

[29]

J. Voigt, On substochastic $C_0$-semigroups and their generators,, Transp. Theory. Stat. Phys, 16 (1987), 453. doi: 10.1080/00411458708204302. Google Scholar

[30]

J. Voigt, On resolvent positive operators and positive $C_0$-semigroups on $AL$-spaces,, Semigroup Forum, 38 (1989), 263. doi: 10.1007/BF02573236. Google Scholar

show all references

References:
[1]

L. Arlotti, The Cauchy problem for the linear Maxwell-Bolztmann equation,, J. Differential Equations, 69 (1987), 166. doi: 10.1016/0022-0396(87)90115-X. Google Scholar

[2]

L. Arlotti, A perturbation theorem for positive contraction semigroups on $L^1$-spaces with applications to transport equation and Kolmogorov's differential equations,, Acta Appl. Math., {23 (1991), 129. doi: 10.1007/BF00048802. Google Scholar

[3]

L. Arlotti and J. Banasiak, Strictly substochastic semigroups with application to conservative and shattering solution to fragmentation equation with mass loss,, J. Math. Anal. Appl., {293 (2004), 673. doi: 10.1016/j.jmaa.2004.01.028. Google Scholar

[4]

L. Arlotti and J. Banasiak, Nonautonomous fragmentation equation via evolution semigroups,, Math. Meth. Appl. Sci., 33 (2010), 1201. doi: 10.1002/mma.1282. Google Scholar

[5]

L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, On perturbed substochastic semigroups in abstract state spaces,, Z. Anal. Anwend., 30 (2011), 457. doi: 0.4171/ZAA/1444. Google Scholar

[6]

L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations,, preprint, (2013). Google Scholar

[7]

J. Banasiak and M. Lachowicz, Around the Kato generation theorem for semigroups,, Studia Math, 179 (2007), 217. doi: 10.4064/sm179-3-2. Google Scholar

[8]

J. Banasiak, Positivity in natural sciences,, in, (2008), 1. Google Scholar

[9]

C. J. Batty and D. W. Robinson, Positive one-parameter semigroups on ordered Banach spaces,, Acta Appl. Math., 1 (1984), 221. doi: 10.1007/BF02280855. Google Scholar

[10]

C. Chicone and Yu. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations,", Mathematical surveys and monographs 70, (1999). Google Scholar

[11]

E. B. Davies, "Quantum Theory of Open Systems,", Academic Press, (1976). Google Scholar

[12]

E. B. Davies, Quantum dynamical semigroups and the neutron diffusion equation,, Rep. Math. Phys., 11 (1977), 169. doi: 10.1016/0034-4877(77)90059-3. Google Scholar

[13]

K. J. Engel and R. Nagel, "One-parameter Semigroups for Linear Evolution Equations,", Springer, (2000). Google Scholar

[14]

G. Frosali, C. van der Mee and F. Mugelli, A characterization theorem for the evolution semigroup generated by the sum of two unbounded operators,, Math. Meth. Appl. Sci., 27 (2004), 669. doi: 10.1002/mma.495. Google Scholar

[15]

A. Gulisashvili and J. A. van Casteren, "Non-autonomous Kato Classes and Feynman-Kac Propagators,", World Scientific, (2006). Google Scholar

[16]

T. Kato, On the semi-groups generated by Kolmogoroff's differential equations,, J. Math. Soc. Jap., 6 (1954), 1. doi: 10.2969/jmsj/00610001. Google Scholar

[17]

V. Liskevich, H. Vogt and J. Voigt, Gaussian bounds for propagators perturbed by potentials,, J. Funct. Anal., 238 (2006), 245. doi: 10.1016/j.jfa.2006.04.010. Google Scholar

[18]

M. Mokhtar-Kharroubi, On perturbed positive $C_0$-semigroups on the Banach space of trace class operators,, Infinite Dim. Anal. Quant. Prob. Related Topics, 11 (2008), 1. doi: 10.1142/S0219025708003130. Google Scholar

[19]

M. Mokhtar-Kharroubi and J. Voigt, On honesty of perturbed substochastic $C_0$-semigroups in $L^1$-spaces,, J. Operator Th, 64 (2010), 101. Google Scholar

[20]

M. Mokhtar-Kharroubi, New generation theorems in transport theory,, Afr. Mat., 22 (2011), 153. doi: 10.1007/s13370-011-0014-1. Google Scholar

[21]

S. Monniaux and A. Rhandi, Semigroup methods to solve non-autonomous evolution equations,, Semigroup Forum, 60 (2000), 122. doi: 10.1007/s002330010006. Google Scholar

[22]

B. de Pagter, Ordered Banach spaces,, in, (1987), 265. Google Scholar

[23]

F. Räbiger, A. Rhandi and R. Schnaubelt, Perturbation and an abstract characterization of evolution semigroups,, J. Math. Anal. Appl., 198 (1996), 516. doi: 10.1006/jmaa.1996.0096. Google Scholar

[24]

F. Räbiger, R. Schnaubelt, A. Rhandi and J. Voigt, Non-autonomous Miyadera perturbations,, Differential Integral Equations, 13 (2000), 341. Google Scholar

[25]

H. Thieme and J. Voigt, Stochastic semigroups: their construction by perturbation and approximation,, in, (2006), 135. Google Scholar

[26]

C. van der Mee, Time-dependent kinetic equations with collision terms relatively bounded with respect to the collision frequency,, Transport Theory and Statistical Physics, 30 (2001), 63. doi: 10.1081/TT-100104455. Google Scholar

[27]

J. Voigt, On the perturbation theory for strongly continuous semigroups,, Math. Ann., 229 (1977), 163. doi: 10.1007/BF01351602. Google Scholar

[28]

J. Voigt, "Functional Analytic Treatment of the Initial Boundary Value Problem for Collisionless Gases,", Habilitationsschrift, (1981). Google Scholar

[29]

J. Voigt, On substochastic $C_0$-semigroups and their generators,, Transp. Theory. Stat. Phys, 16 (1987), 453. doi: 10.1080/00411458708204302. Google Scholar

[30]

J. Voigt, On resolvent positive operators and positive $C_0$-semigroups on $AL$-spaces,, Semigroup Forum, 38 (1989), 263. doi: 10.1007/BF02573236. Google Scholar

[1]

Wael Bahsoun, Benoît Saussol. Linear response in the intermittent family: Differentiation in a weighted $C^0$-norm. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6657-6668. doi: 10.3934/dcds.2016089

[2]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[3]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[4]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[5]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[6]

Jacek Banasiak, Mustapha Mokhtar-Kharroubi. Universality of dishonesty of substochastic semigroups: Shattering fragmentation and explosive birth-and-death processes. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 529-542. doi: 10.3934/dcdsb.2005.5.529

[7]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[8]

Viorel Barbu, Gabriela Marinoschi. An identification problem for a linear evolution equation in a banach space. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-12. doi: 10.3934/dcdss.2020081

[9]

Karsten Matthies, George Stone, Florian Theil. The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinetic & Related Models, 2018, 11 (1) : 137-177. doi: 10.3934/krm.2018008

[10]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[11]

Alfredo Lorenzi, Ioan I. Vrabie. An identification problem for a linear evolution equation in a Banach space and applications. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 671-691. doi: 10.3934/dcdss.2011.4.671

[12]

Noboru Okazawa, Kentarou Yoshii. Linear evolution equations with strongly measurable families and application to the Dirac equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 723-744. doi: 10.3934/dcdss.2011.4.723

[13]

Angela A. Albanese, Elisabetta M. Mangino. Analytic semigroups and some degenerate evolution equations defined on domains with corners. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 595-615. doi: 10.3934/dcds.2015.35.595

[14]

Niclas Bernhoff. On half-space problems for the weakly non-linear discrete Boltzmann equation. Kinetic & Related Models, 2010, 3 (2) : 195-222. doi: 10.3934/krm.2010.3.195

[15]

Laurent Gosse. Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension. Kinetic & Related Models, 2012, 5 (2) : 283-323. doi: 10.3934/krm.2012.5.283

[16]

Karsten Matthies, George Stone. Derivation of a non-autonomous linear Boltzmann equation from a heterogeneous Rayleigh gas. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3299-3355. doi: 10.3934/dcds.2018143

[17]

Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044

[18]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[19]

Leif Arkeryd, Anne Nouri. On a Boltzmann equation for Haldane statistics. Kinetic & Related Models, 2019, 12 (2) : 323-346. doi: 10.3934/krm.2019014

[20]

John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

[Back to Top]