-
Previous Article
Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities
- CPAA Home
- This Issue
-
Next Article
High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems
Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems
1. | Department of Mathematics, Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan 650500, China |
2. | School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083, China |
References:
[1] |
E. A. B. Ailva, Subharmonic solutions for subquadratic Hamiltonian systems,, J. Diff. Eqs., 115 (1995), 120.
doi: 10.1006/jdeq.1995.1007. |
[2] |
K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems,", Birkh\, (1993).
doi: 10.1007/978-1-4612-0385-8. |
[3] |
Y. Ding, "Variational Methods for Strongly Indefinite Problems,", World Scientific Publishing Co. Pte. Ltd., (2007).
|
[4] |
I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems,, Invent. Math., 81 (1985), 155.
doi: 10.1007/BF01388776. |
[5] |
I. Ekeland, "Convexity Method in Hamiltonian Mechanics,", Springer-Verlag, (1990).
doi: 10.1007/978-3-642-74331-3. |
[6] |
G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems,, Nonlinear Anal., 27 (1996), 821.
doi: 10.1016/0362-546X(95)00077-9. |
[7] |
G. Fei, S. K. Kim and T. Wang, Minimal period estimates of periodic solutions for superquadratic Hamiltonian systems,, J. Math. Anal. Appl., 238 (1999), 216.
doi: 10.1006/jmaa.1999.6527. |
[8] |
G. Fei, On periodic solutions of superquadratic Hamiltonian systems,, Electronic Journal of Differential Equations, 2002 (2002), 1.
|
[9] |
Q. Jiang and S. Ma, Periodic solution for a class of subquadratic second order Hamiltonian system,, Jounal of Southwest China normal University (Natural Science), 32 (2007), 6. Google Scholar |
[10] |
Sophia Th. Kyritsi and Nikolaos S. Papageorgiou, On superquadratic periodic systems with indefinite linear part,, Nonlinear Anal. TMA., 72 (2010), 946.
doi: 10.1016/j.na.2009.07.035. |
[11] |
S. Luan and A. Mao, Periodic solutions for a class of non-autonomous Hamiltonian systems,, Nonlinear Anal., 61 (2005), 1413.
doi: 10.1016/j.na.2005.01.108. |
[12] |
S. Luan and A. Mao, Periodic solutions of nonautonomous second order Hamiltonian systems,, Acta Mathematica Sinica, 21 (2005), 685.
doi: 10.1007/s10114-005-0532-6. |
[13] |
S. Li and M. Willem, Applications of local linking to critical point theory,, J. Math. Anal. Appl., 189 (1995), 6.
doi: 10.1006/jmaa.1995.1002. |
[14] |
J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer-Verlag, (1989).
doi: 10.1007/978-1-4757-2061-7. |
[15] |
K. Perera, Critical groups of critical points produced by local linking with applications,, Abstr. Appl. Anal., 3 (1998), 437.
doi: 10.1155/S1085337598000657. |
[16] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", in: CBMS Regional Conf. Ser. in Math., (1986).
|
[17] |
P. H. Rabinowitz, Periodic solutions of Hamiltonian systems,, Comm. Pure Appl. Math., 31 (1978), 157.
doi: 10.1002/cpa.3160310203. |
[18] |
M. Schechter, Periodic non-autonomous second-order dynamical systems,, J. Differential Equations, 223 (2006), 290.
doi: 10.1016/j.jde.2005.02.022. |
[19] |
M. Schechter, "Minimax Systems and Critical Point Theory,", Birkh\, (2009).
doi: 10.1007/978-0-8176-4902-9. |
[20] |
C. L. Tang, Periodic solutions of nonautonomous second order systems with sublinear nonlinearity,, Proc. Amer. Math. Soc. \textbf{126} (1998), 126 (1998), 3263.
doi: 10.1090/S0002-9939-98-04706-6. |
[21] |
Z. L. Tao and C. L. Tang, Periodic and subharmonic solutions of second order Hamiltonian systems,, J. Math. Anal. Appl., 293 (2004), 435.
doi: 10.1016/j.jmaa.2003.11.007. |
[22] |
Z. L. Tao and C. L. Tang, Periodic solutions of nonquadratic second order Hamiltonian systems,, (Chinese), 27 (2002), 841. Google Scholar |
[23] |
Z. L. Tao, S. Yan and S. L. Wu, Periodic solutions for a class of superquadratic Hamiltonian systems,, J. Math. Anal. Appl., 331 (2007), 152.
doi: 10.1016/j.jmaa.2006.08.041. |
[24] |
Y. W. Ye and C. L. Tang, Periodic and subharmonic soltions for a class of superquadratic second order Hamiltonian systems,, Nonlinear Anal., 71 (2009), 2298.
doi: 10.1016/j.na.2009.01.064. |
show all references
References:
[1] |
E. A. B. Ailva, Subharmonic solutions for subquadratic Hamiltonian systems,, J. Diff. Eqs., 115 (1995), 120.
doi: 10.1006/jdeq.1995.1007. |
[2] |
K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems,", Birkh\, (1993).
doi: 10.1007/978-1-4612-0385-8. |
[3] |
Y. Ding, "Variational Methods for Strongly Indefinite Problems,", World Scientific Publishing Co. Pte. Ltd., (2007).
|
[4] |
I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems,, Invent. Math., 81 (1985), 155.
doi: 10.1007/BF01388776. |
[5] |
I. Ekeland, "Convexity Method in Hamiltonian Mechanics,", Springer-Verlag, (1990).
doi: 10.1007/978-3-642-74331-3. |
[6] |
G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems,, Nonlinear Anal., 27 (1996), 821.
doi: 10.1016/0362-546X(95)00077-9. |
[7] |
G. Fei, S. K. Kim and T. Wang, Minimal period estimates of periodic solutions for superquadratic Hamiltonian systems,, J. Math. Anal. Appl., 238 (1999), 216.
doi: 10.1006/jmaa.1999.6527. |
[8] |
G. Fei, On periodic solutions of superquadratic Hamiltonian systems,, Electronic Journal of Differential Equations, 2002 (2002), 1.
|
[9] |
Q. Jiang and S. Ma, Periodic solution for a class of subquadratic second order Hamiltonian system,, Jounal of Southwest China normal University (Natural Science), 32 (2007), 6. Google Scholar |
[10] |
Sophia Th. Kyritsi and Nikolaos S. Papageorgiou, On superquadratic periodic systems with indefinite linear part,, Nonlinear Anal. TMA., 72 (2010), 946.
doi: 10.1016/j.na.2009.07.035. |
[11] |
S. Luan and A. Mao, Periodic solutions for a class of non-autonomous Hamiltonian systems,, Nonlinear Anal., 61 (2005), 1413.
doi: 10.1016/j.na.2005.01.108. |
[12] |
S. Luan and A. Mao, Periodic solutions of nonautonomous second order Hamiltonian systems,, Acta Mathematica Sinica, 21 (2005), 685.
doi: 10.1007/s10114-005-0532-6. |
[13] |
S. Li and M. Willem, Applications of local linking to critical point theory,, J. Math. Anal. Appl., 189 (1995), 6.
doi: 10.1006/jmaa.1995.1002. |
[14] |
J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer-Verlag, (1989).
doi: 10.1007/978-1-4757-2061-7. |
[15] |
K. Perera, Critical groups of critical points produced by local linking with applications,, Abstr. Appl. Anal., 3 (1998), 437.
doi: 10.1155/S1085337598000657. |
[16] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", in: CBMS Regional Conf. Ser. in Math., (1986).
|
[17] |
P. H. Rabinowitz, Periodic solutions of Hamiltonian systems,, Comm. Pure Appl. Math., 31 (1978), 157.
doi: 10.1002/cpa.3160310203. |
[18] |
M. Schechter, Periodic non-autonomous second-order dynamical systems,, J. Differential Equations, 223 (2006), 290.
doi: 10.1016/j.jde.2005.02.022. |
[19] |
M. Schechter, "Minimax Systems and Critical Point Theory,", Birkh\, (2009).
doi: 10.1007/978-0-8176-4902-9. |
[20] |
C. L. Tang, Periodic solutions of nonautonomous second order systems with sublinear nonlinearity,, Proc. Amer. Math. Soc. \textbf{126} (1998), 126 (1998), 3263.
doi: 10.1090/S0002-9939-98-04706-6. |
[21] |
Z. L. Tao and C. L. Tang, Periodic and subharmonic solutions of second order Hamiltonian systems,, J. Math. Anal. Appl., 293 (2004), 435.
doi: 10.1016/j.jmaa.2003.11.007. |
[22] |
Z. L. Tao and C. L. Tang, Periodic solutions of nonquadratic second order Hamiltonian systems,, (Chinese), 27 (2002), 841. Google Scholar |
[23] |
Z. L. Tao, S. Yan and S. L. Wu, Periodic solutions for a class of superquadratic Hamiltonian systems,, J. Math. Anal. Appl., 331 (2007), 152.
doi: 10.1016/j.jmaa.2006.08.041. |
[24] |
Y. W. Ye and C. L. Tang, Periodic and subharmonic soltions for a class of superquadratic second order Hamiltonian systems,, Nonlinear Anal., 71 (2009), 2298.
doi: 10.1016/j.na.2009.01.064. |
[1] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[2] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[3] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[4] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[5] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[6] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[7] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[8] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[9] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[10] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[11] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[12] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[13] |
Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020172 |
[14] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[15] |
Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119 |
[16] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[17] |
Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040 |
[18] |
Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021002 |
[19] |
Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021009 |
[20] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]