• Previous Article
    Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities
  • CPAA Home
  • This Issue
  • Next Article
    High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems
January  2014, 13(1): 75-95. doi: 10.3934/cpaa.2014.13.75

Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems

1. 

Department of Mathematics, Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan 650500, China

2. 

School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083, China

Received  May 2011 Revised  April 2012 Published  July 2013

In this paper, some existence theorems are obtained for periodic solutions of second order Hamiltonian systems under non-quadratic conditions by using the minimax principle. Our results unite, extend and improve those relative works in some known literature.
Citation: Xingyong Zhang, Xianhua Tang. Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems. Communications on Pure & Applied Analysis, 2014, 13 (1) : 75-95. doi: 10.3934/cpaa.2014.13.75
References:
[1]

E. A. B. Ailva, Subharmonic solutions for subquadratic Hamiltonian systems,, J. Diff. Eqs., 115 (1995), 120.  doi: 10.1006/jdeq.1995.1007.  Google Scholar

[2]

K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems,", Birkh\, (1993).  doi: 10.1007/978-1-4612-0385-8.  Google Scholar

[3]

Y. Ding, "Variational Methods for Strongly Indefinite Problems,", World Scientific Publishing Co. Pte. Ltd., (2007).   Google Scholar

[4]

I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems,, Invent. Math., 81 (1985), 155.  doi: 10.1007/BF01388776.  Google Scholar

[5]

I. Ekeland, "Convexity Method in Hamiltonian Mechanics,", Springer-Verlag, (1990).  doi: 10.1007/978-3-642-74331-3.  Google Scholar

[6]

G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems,, Nonlinear Anal., 27 (1996), 821.  doi: 10.1016/0362-546X(95)00077-9.  Google Scholar

[7]

G. Fei, S. K. Kim and T. Wang, Minimal period estimates of periodic solutions for superquadratic Hamiltonian systems,, J. Math. Anal. Appl., 238 (1999), 216.  doi: 10.1006/jmaa.1999.6527.  Google Scholar

[8]

G. Fei, On periodic solutions of superquadratic Hamiltonian systems,, Electronic Journal of Differential Equations, 2002 (2002), 1.   Google Scholar

[9]

Q. Jiang and S. Ma, Periodic solution for a class of subquadratic second order Hamiltonian system,, Jounal of Southwest China normal University (Natural Science), 32 (2007), 6.   Google Scholar

[10]

Sophia Th. Kyritsi and Nikolaos S. Papageorgiou, On superquadratic periodic systems with indefinite linear part,, Nonlinear Anal. TMA., 72 (2010), 946.  doi: 10.1016/j.na.2009.07.035.  Google Scholar

[11]

S. Luan and A. Mao, Periodic solutions for a class of non-autonomous Hamiltonian systems,, Nonlinear Anal., 61 (2005), 1413.  doi: 10.1016/j.na.2005.01.108.  Google Scholar

[12]

S. Luan and A. Mao, Periodic solutions of nonautonomous second order Hamiltonian systems,, Acta Mathematica Sinica, 21 (2005), 685.  doi: 10.1007/s10114-005-0532-6.  Google Scholar

[13]

S. Li and M. Willem, Applications of local linking to critical point theory,, J. Math. Anal. Appl., 189 (1995), 6.  doi: 10.1006/jmaa.1995.1002.  Google Scholar

[14]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer-Verlag, (1989).  doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[15]

K. Perera, Critical groups of critical points produced by local linking with applications,, Abstr. Appl. Anal., 3 (1998), 437.  doi: 10.1155/S1085337598000657.  Google Scholar

[16]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", in: CBMS Regional Conf. Ser. in Math., (1986).   Google Scholar

[17]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems,, Comm. Pure Appl. Math., 31 (1978), 157.  doi: 10.1002/cpa.3160310203.  Google Scholar

[18]

M. Schechter, Periodic non-autonomous second-order dynamical systems,, J. Differential Equations, 223 (2006), 290.  doi: 10.1016/j.jde.2005.02.022.  Google Scholar

[19]

M. Schechter, "Minimax Systems and Critical Point Theory,", Birkh\, (2009).  doi: 10.1007/978-0-8176-4902-9.  Google Scholar

[20]

C. L. Tang, Periodic solutions of nonautonomous second order systems with sublinear nonlinearity,, Proc. Amer. Math. Soc. \textbf{126} (1998), 126 (1998), 3263.  doi: 10.1090/S0002-9939-98-04706-6.  Google Scholar

[21]

Z. L. Tao and C. L. Tang, Periodic and subharmonic solutions of second order Hamiltonian systems,, J. Math. Anal. Appl., 293 (2004), 435.  doi: 10.1016/j.jmaa.2003.11.007.  Google Scholar

[22]

Z. L. Tao and C. L. Tang, Periodic solutions of nonquadratic second order Hamiltonian systems,, (Chinese), 27 (2002), 841.   Google Scholar

[23]

Z. L. Tao, S. Yan and S. L. Wu, Periodic solutions for a class of superquadratic Hamiltonian systems,, J. Math. Anal. Appl., 331 (2007), 152.  doi: 10.1016/j.jmaa.2006.08.041.  Google Scholar

[24]

Y. W. Ye and C. L. Tang, Periodic and subharmonic soltions for a class of superquadratic second order Hamiltonian systems,, Nonlinear Anal., 71 (2009), 2298.  doi: 10.1016/j.na.2009.01.064.  Google Scholar

show all references

References:
[1]

E. A. B. Ailva, Subharmonic solutions for subquadratic Hamiltonian systems,, J. Diff. Eqs., 115 (1995), 120.  doi: 10.1006/jdeq.1995.1007.  Google Scholar

[2]

K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems,", Birkh\, (1993).  doi: 10.1007/978-1-4612-0385-8.  Google Scholar

[3]

Y. Ding, "Variational Methods for Strongly Indefinite Problems,", World Scientific Publishing Co. Pte. Ltd., (2007).   Google Scholar

[4]

I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems,, Invent. Math., 81 (1985), 155.  doi: 10.1007/BF01388776.  Google Scholar

[5]

I. Ekeland, "Convexity Method in Hamiltonian Mechanics,", Springer-Verlag, (1990).  doi: 10.1007/978-3-642-74331-3.  Google Scholar

[6]

G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems,, Nonlinear Anal., 27 (1996), 821.  doi: 10.1016/0362-546X(95)00077-9.  Google Scholar

[7]

G. Fei, S. K. Kim and T. Wang, Minimal period estimates of periodic solutions for superquadratic Hamiltonian systems,, J. Math. Anal. Appl., 238 (1999), 216.  doi: 10.1006/jmaa.1999.6527.  Google Scholar

[8]

G. Fei, On periodic solutions of superquadratic Hamiltonian systems,, Electronic Journal of Differential Equations, 2002 (2002), 1.   Google Scholar

[9]

Q. Jiang and S. Ma, Periodic solution for a class of subquadratic second order Hamiltonian system,, Jounal of Southwest China normal University (Natural Science), 32 (2007), 6.   Google Scholar

[10]

Sophia Th. Kyritsi and Nikolaos S. Papageorgiou, On superquadratic periodic systems with indefinite linear part,, Nonlinear Anal. TMA., 72 (2010), 946.  doi: 10.1016/j.na.2009.07.035.  Google Scholar

[11]

S. Luan and A. Mao, Periodic solutions for a class of non-autonomous Hamiltonian systems,, Nonlinear Anal., 61 (2005), 1413.  doi: 10.1016/j.na.2005.01.108.  Google Scholar

[12]

S. Luan and A. Mao, Periodic solutions of nonautonomous second order Hamiltonian systems,, Acta Mathematica Sinica, 21 (2005), 685.  doi: 10.1007/s10114-005-0532-6.  Google Scholar

[13]

S. Li and M. Willem, Applications of local linking to critical point theory,, J. Math. Anal. Appl., 189 (1995), 6.  doi: 10.1006/jmaa.1995.1002.  Google Scholar

[14]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer-Verlag, (1989).  doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[15]

K. Perera, Critical groups of critical points produced by local linking with applications,, Abstr. Appl. Anal., 3 (1998), 437.  doi: 10.1155/S1085337598000657.  Google Scholar

[16]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", in: CBMS Regional Conf. Ser. in Math., (1986).   Google Scholar

[17]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems,, Comm. Pure Appl. Math., 31 (1978), 157.  doi: 10.1002/cpa.3160310203.  Google Scholar

[18]

M. Schechter, Periodic non-autonomous second-order dynamical systems,, J. Differential Equations, 223 (2006), 290.  doi: 10.1016/j.jde.2005.02.022.  Google Scholar

[19]

M. Schechter, "Minimax Systems and Critical Point Theory,", Birkh\, (2009).  doi: 10.1007/978-0-8176-4902-9.  Google Scholar

[20]

C. L. Tang, Periodic solutions of nonautonomous second order systems with sublinear nonlinearity,, Proc. Amer. Math. Soc. \textbf{126} (1998), 126 (1998), 3263.  doi: 10.1090/S0002-9939-98-04706-6.  Google Scholar

[21]

Z. L. Tao and C. L. Tang, Periodic and subharmonic solutions of second order Hamiltonian systems,, J. Math. Anal. Appl., 293 (2004), 435.  doi: 10.1016/j.jmaa.2003.11.007.  Google Scholar

[22]

Z. L. Tao and C. L. Tang, Periodic solutions of nonquadratic second order Hamiltonian systems,, (Chinese), 27 (2002), 841.   Google Scholar

[23]

Z. L. Tao, S. Yan and S. L. Wu, Periodic solutions for a class of superquadratic Hamiltonian systems,, J. Math. Anal. Appl., 331 (2007), 152.  doi: 10.1016/j.jmaa.2006.08.041.  Google Scholar

[24]

Y. W. Ye and C. L. Tang, Periodic and subharmonic soltions for a class of superquadratic second order Hamiltonian systems,, Nonlinear Anal., 71 (2009), 2298.  doi: 10.1016/j.na.2009.01.064.  Google Scholar

[1]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[2]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[3]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[4]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[5]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[6]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[7]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[8]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[9]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[10]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[11]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[12]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[13]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[14]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[15]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[16]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[17]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[18]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[19]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[20]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]