March  2014, 13(2): 789-809. doi: 10.3934/cpaa.2014.13.789

A strongly singular parabolic problem on an unbounded domain

1. 

Department of Mathematics, National Technical University of Athens, 15780, Athens, Greece

2. 

Department of Mathematics & Engineering Sciences, Hellenic Army Academy, 16673, Athens

Received  April 2013 Revised  September 2013 Published  October 2013

We study the well-posedness and describe the asymptotic behavior of solutions of a strongly singular equation for the Cauchy problem on $R^N$. The strong singularity is exactly the critical case of the Caffarelli-Kohn-Nirenberg inequality. Moreover, we show the stabilization towards a radially symmetric solution in self-similar variables with a polynomial decay rate. This equation is closely related to a heat equation with inverse-square potential, posed on $R^N$. In this case we have the appearance of the Hardy singularity energy.
Citation: G. P. Trachanas, Nikolaos B. Zographopoulos. A strongly singular parabolic problem on an unbounded domain. Communications on Pure & Applied Analysis, 2014, 13 (2) : 789-809. doi: 10.3934/cpaa.2014.13.789
References:
[1]

Adimurthi, S. Filippas and A. Tertikas, On the best constant of Hardy-Sobolev inequalities,, Nonlinear An. TMA, 70 (2009), 2826. doi: 10.1016/j.na.2008.12.019. Google Scholar

[2]

W. Arendt, G. R. Goldstein and J. A. Goldstein, Outgrowths of Hardy's inequality,, Contemporary Math. AMS, 412 (2006), 51. doi: 10.1090/conm/412/07766. Google Scholar

[3]

J. P. García Azozero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems,, J. Diff. Equations, 144 (1998), 441. doi: 10.1006/jdeq.1997.3375. Google Scholar

[4]

P. Baras and J. A. Goldstein, The heat equation with a singular potential,, Trans. Amer. Math. Soc., 284 (1984), 121. doi: 10.1090/S0002-9947-1984-0742415-3. Google Scholar

[5]

H. Brezis and J. L. Vázquez, Blowup solutions of some nonlinear elliptic problems,, Revista Mat. Univ. Complutense Madrid, 10 (1997), 443. Google Scholar

[6]

X. Cabré and Y. Martel, Existence versus explosion instantané pour des equations de lachaleur linéaires avec potentiel singulier,, C.R. Acad. Sci. Paris, 329 (1999), 973. doi: 10.1016/S0764-4442(00)88588-2. Google Scholar

[7]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, Compositio Math., 53 (1984), 259. Google Scholar

[8]

F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence) and symmetry of extremal functions,, Comm. Pure Appl. Math. \textbf{LIV} (2001), LIV (2001), 229. doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. Google Scholar

[9]

C. Cazacu, Schrödinger operators with boundary singularities: Hardy inequality, Pohozaev identity and controllability results,, J. Funct. Anal., 263 (2012), 3741. doi: 10.1016/j.jfa.2012.09.006. Google Scholar

[10]

G. R. Goldstein, J. A. Goldstein and A. Rhandi, Kolmogorov equations perturbed by an inverse-square potential,, Disc.Cont.Dyn.Syst.-Series S, 4 (2011), 623. doi: 10.3934/dcdss.2011.4.623. Google Scholar

[11]

J. A. Goldstein and I. Kombe, Nonlinear degenerate parabolic equations with singular lower-order term,, Adv. Diff. Equat., 8 (2003), 1153. Google Scholar

[12]

J. A. Goldstein and Q. S. Zhang, Linear parabolic equations with strong singular potentials,, Trans. Amer. Math. Soc., 355 (2003), 197. doi: 10.1090/S0002-9947-02-03057-X. Google Scholar

[13]

N. Ghoussoub and A. Moradifam, Bessel potentials and optimal Hardy and Hardy-Rellich inequalities,, Math. Ann., (2011), 1. doi: 10.1007/s00208-010-0510-x. Google Scholar

[14]

M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation,, Nonlinear Anal. Theory, 11 (1987), 1103. Google Scholar

[15]

N. I. Karachalios, Weyl's type estimates on the eigenvalues of critical Schrödinger operators,, Lett. Math. Phys., 83 (2008), 189. doi: 10.1007/s11005-007-0218-3. Google Scholar

[16]

N. I. Karachalios and N. B. Zographopoulos, The semiflow of a reaction diffusion equation with a singular potential,, Manuscripta Math., 130 (2009), 63. doi: 10.1007/s00229-009-0284-1. Google Scholar

[17]

L. Moschini and A. Tesei, Parabolic Harnack Inequality for the heat equation with inverse-square potential,, Forum Math., 19 (2007), 407. doi: 10.1515/FORUM.2007.017. Google Scholar

[18]

L. Moschini, G. Reyes and A. Tesei, Nonuniqueness of solutions to semilinear parabolic equations with singular coefficients,, Comm. Pure Appl. Anal., 1 (2006), 155. Google Scholar

[19]

G. Reyes and A. Tesei, Self-similar solutions of a semilinear parabolic equation with inverse-square potential,, J. Diff. Equations, 219 (2005), 40. doi: 10.1016/j.jde.2005.06.031. Google Scholar

[20]

J. M. Tölle, Uniqueness of weighted sobolev spaces with weakly differentiable weights,, J. Funct. Analysis, 263 (2012), 3195. doi: 10.1016/j.jfa.2012.08.002. Google Scholar

[21]

J. Vancostenoble and E. Zuazua, Null Controllability for the heat equation with singular inverse-square potentials,, J. Funct. Analysis, 254 (2008), 1864. doi: 10.1016/j.jfa.2007.12.015. Google Scholar

[22]

J. L. Vázquez and N. B. Zographopoulos, Functional aspects of the Hardy inequality. Appearance of a hidden energy,, J. Evol. Equ., 12 (2012). doi: 10.1007/s00028-012-0151-5. Google Scholar

[23]

J. L. Vázquez and N. B. Zographopoulos, Functional aspects of Hardy type inequalities,, Disc. Cont. Dyn. Syst., 33 (2013), 5457. doi: 10.3934/dcds.2013.33.5457. Google Scholar

[24]

J. L. Vázquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. Funct. Anal., 173 (2000), 103. doi: 10.1006/jfan.1999.3556. Google Scholar

[25]

N. B. Zographopoulos, Weyl's type estimates on the eigenvalues of critical Schrödinger operators using improved Hardy-Sobolev inequalities,, J. Physics A: Math. Theor., 42 (2009). doi: 10.1088/1751-8113/42/46/465204. Google Scholar

[26]

N. B. Zographopoulos, Existence of extremal functions for a Hardy-Sobolev inequality,, J. Funct. Anal., 259 (2010), 308. doi: 10.1016/j.jfa.2010.03.020. Google Scholar

show all references

References:
[1]

Adimurthi, S. Filippas and A. Tertikas, On the best constant of Hardy-Sobolev inequalities,, Nonlinear An. TMA, 70 (2009), 2826. doi: 10.1016/j.na.2008.12.019. Google Scholar

[2]

W. Arendt, G. R. Goldstein and J. A. Goldstein, Outgrowths of Hardy's inequality,, Contemporary Math. AMS, 412 (2006), 51. doi: 10.1090/conm/412/07766. Google Scholar

[3]

J. P. García Azozero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems,, J. Diff. Equations, 144 (1998), 441. doi: 10.1006/jdeq.1997.3375. Google Scholar

[4]

P. Baras and J. A. Goldstein, The heat equation with a singular potential,, Trans. Amer. Math. Soc., 284 (1984), 121. doi: 10.1090/S0002-9947-1984-0742415-3. Google Scholar

[5]

H. Brezis and J. L. Vázquez, Blowup solutions of some nonlinear elliptic problems,, Revista Mat. Univ. Complutense Madrid, 10 (1997), 443. Google Scholar

[6]

X. Cabré and Y. Martel, Existence versus explosion instantané pour des equations de lachaleur linéaires avec potentiel singulier,, C.R. Acad. Sci. Paris, 329 (1999), 973. doi: 10.1016/S0764-4442(00)88588-2. Google Scholar

[7]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, Compositio Math., 53 (1984), 259. Google Scholar

[8]

F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence) and symmetry of extremal functions,, Comm. Pure Appl. Math. \textbf{LIV} (2001), LIV (2001), 229. doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. Google Scholar

[9]

C. Cazacu, Schrödinger operators with boundary singularities: Hardy inequality, Pohozaev identity and controllability results,, J. Funct. Anal., 263 (2012), 3741. doi: 10.1016/j.jfa.2012.09.006. Google Scholar

[10]

G. R. Goldstein, J. A. Goldstein and A. Rhandi, Kolmogorov equations perturbed by an inverse-square potential,, Disc.Cont.Dyn.Syst.-Series S, 4 (2011), 623. doi: 10.3934/dcdss.2011.4.623. Google Scholar

[11]

J. A. Goldstein and I. Kombe, Nonlinear degenerate parabolic equations with singular lower-order term,, Adv. Diff. Equat., 8 (2003), 1153. Google Scholar

[12]

J. A. Goldstein and Q. S. Zhang, Linear parabolic equations with strong singular potentials,, Trans. Amer. Math. Soc., 355 (2003), 197. doi: 10.1090/S0002-9947-02-03057-X. Google Scholar

[13]

N. Ghoussoub and A. Moradifam, Bessel potentials and optimal Hardy and Hardy-Rellich inequalities,, Math. Ann., (2011), 1. doi: 10.1007/s00208-010-0510-x. Google Scholar

[14]

M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation,, Nonlinear Anal. Theory, 11 (1987), 1103. Google Scholar

[15]

N. I. Karachalios, Weyl's type estimates on the eigenvalues of critical Schrödinger operators,, Lett. Math. Phys., 83 (2008), 189. doi: 10.1007/s11005-007-0218-3. Google Scholar

[16]

N. I. Karachalios and N. B. Zographopoulos, The semiflow of a reaction diffusion equation with a singular potential,, Manuscripta Math., 130 (2009), 63. doi: 10.1007/s00229-009-0284-1. Google Scholar

[17]

L. Moschini and A. Tesei, Parabolic Harnack Inequality for the heat equation with inverse-square potential,, Forum Math., 19 (2007), 407. doi: 10.1515/FORUM.2007.017. Google Scholar

[18]

L. Moschini, G. Reyes and A. Tesei, Nonuniqueness of solutions to semilinear parabolic equations with singular coefficients,, Comm. Pure Appl. Anal., 1 (2006), 155. Google Scholar

[19]

G. Reyes and A. Tesei, Self-similar solutions of a semilinear parabolic equation with inverse-square potential,, J. Diff. Equations, 219 (2005), 40. doi: 10.1016/j.jde.2005.06.031. Google Scholar

[20]

J. M. Tölle, Uniqueness of weighted sobolev spaces with weakly differentiable weights,, J. Funct. Analysis, 263 (2012), 3195. doi: 10.1016/j.jfa.2012.08.002. Google Scholar

[21]

J. Vancostenoble and E. Zuazua, Null Controllability for the heat equation with singular inverse-square potentials,, J. Funct. Analysis, 254 (2008), 1864. doi: 10.1016/j.jfa.2007.12.015. Google Scholar

[22]

J. L. Vázquez and N. B. Zographopoulos, Functional aspects of the Hardy inequality. Appearance of a hidden energy,, J. Evol. Equ., 12 (2012). doi: 10.1007/s00028-012-0151-5. Google Scholar

[23]

J. L. Vázquez and N. B. Zographopoulos, Functional aspects of Hardy type inequalities,, Disc. Cont. Dyn. Syst., 33 (2013), 5457. doi: 10.3934/dcds.2013.33.5457. Google Scholar

[24]

J. L. Vázquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. Funct. Anal., 173 (2000), 103. doi: 10.1006/jfan.1999.3556. Google Scholar

[25]

N. B. Zographopoulos, Weyl's type estimates on the eigenvalues of critical Schrödinger operators using improved Hardy-Sobolev inequalities,, J. Physics A: Math. Theor., 42 (2009). doi: 10.1088/1751-8113/42/46/465204. Google Scholar

[26]

N. B. Zographopoulos, Existence of extremal functions for a Hardy-Sobolev inequality,, J. Funct. Anal., 259 (2010), 308. doi: 10.1016/j.jfa.2010.03.020. Google Scholar

[1]

M. Ben Ayed, Abdelbaki Selmi. Asymptotic behavior and existence results for a biharmonic equation involving the critical Sobolev exponent in a five-dimensional domain. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1705-1722. doi: 10.3934/cpaa.2010.9.1705

[2]

Michel Chipot, Karen Yeressian. On the asymptotic behavior of variational inequalities set in cylinders. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4875-4890. doi: 10.3934/dcds.2013.33.4875

[3]

Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160-169. doi: 10.3934/proc.2007.2007.160

[4]

Ming Mei, Bruno Rubino, Rosella Sampalmieri. Asymptotic behavior of solutions to the bipolar hydrodynamic model of semiconductors in bounded domain. Kinetic & Related Models, 2012, 5 (3) : 537-550. doi: 10.3934/krm.2012.5.537

[5]

Said Hadd, Rosanna Manzo, Abdelaziz Rhandi. Unbounded perturbations of the generator domain. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 703-723. doi: 10.3934/dcds.2015.35.703

[6]

Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123

[7]

Giorgio Fusco, Francesco Leonetti, Cristina Pignotti. On the asymptotic behavior of symmetric solutions of the Allen-Cahn equation in unbounded domains in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 725-742. doi: 10.3934/dcds.2017030

[8]

Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247

[9]

Mamoru Okamoto. Asymptotic behavior of solutions to a higher-order KdV-type equation with critical nonlinearity. Evolution Equations & Control Theory, 2019, 8 (3) : 567-601. doi: 10.3934/eect.2019027

[10]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[11]

S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593

[12]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[13]

Evgeny Galakhov, Olga Salieva. Blow-up for nonlinear inequalities with gradient terms and singularities on unbounded sets. Conference Publications, 2015, 2015 (special) : 489-494. doi: 10.3934/proc.2015.0489

[14]

Brahim Alouini, Olivier Goubet. Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 651-677. doi: 10.3934/dcdsb.2014.19.651

[15]

J. Földes, Peter Poláčik. On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 133-157. doi: 10.3934/dcds.2009.25.133

[16]

Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure & Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161

[17]

Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265

[18]

Said Boulite, S. Hadd, L. Maniar. Critical spectrum and stability for population equations with diffusion in unbounded domains. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 265-276. doi: 10.3934/dcdsb.2005.5.265

[19]

Filippo Gazzola. Critical exponents which relate embedding inequalities with quasilinear elliptic problems. Conference Publications, 2003, 2003 (Special) : 327-335. doi: 10.3934/proc.2003.2003.327

[20]

Monica Motta, Caterina Sartori. Asymptotic problems in optimal control with a vanishing Lagrangian and unbounded data. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4527-4552. doi: 10.3934/dcds.2015.35.4527

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]