\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A strongly singular parabolic problem on an unbounded domain

Abstract / Introduction Related Papers Cited by
  • We study the well-posedness and describe the asymptotic behavior of solutions of a strongly singular equation for the Cauchy problem on $R^N$. The strong singularity is exactly the critical case of the Caffarelli-Kohn-Nirenberg inequality. Moreover, we show the stabilization towards a radially symmetric solution in self-similar variables with a polynomial decay rate. This equation is closely related to a heat equation with inverse-square potential, posed on $R^N$. In this case we have the appearance of the Hardy singularity energy.
    Mathematics Subject Classification: Primary: 35K67, 35P15; Secondary: 35A23.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Adimurthi, S. Filippas and A. Tertikas, On the best constant of Hardy-Sobolev inequalities, Nonlinear An. TMA, 70 (2009), 2826-2833.doi: 10.1016/j.na.2008.12.019.

    [2]

    W. Arendt, G. R. Goldstein and J. A. Goldstein, Outgrowths of Hardy's inequality, Contemporary Math. AMS, 412 (2006), 51-68.doi: 10.1090/conm/412/07766.

    [3]

    J. P. García Azozero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Diff. Equations, 144 (1998), 441-476.doi: 10.1006/jdeq.1997.3375.

    [4]

    P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 284 (1984), 121-139.doi: 10.1090/S0002-9947-1984-0742415-3.

    [5]

    H. Brezis and J. L. Vázquez, Blowup solutions of some nonlinear elliptic problems, Revista Mat. Univ. Complutense Madrid, 10 (1997), 443-469.

    [6]

    X. Cabré and Y. Martel, Existence versus explosion instantané pour des equations de lachaleur linéaires avec potentiel singulier, C.R. Acad. Sci. Paris, 329 (1999), 973-978.doi: 10.1016/S0764-4442(00)88588-2.

    [7]

    L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275.

    [8]

    F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence) and symmetry of extremal functions, Comm. Pure Appl. Math. LIV (2001), 229-258.doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.

    [9]

    C. Cazacu, Schrödinger operators with boundary singularities: Hardy inequality, Pohozaev identity and controllability results, J. Funct. Anal., 263 (2012), 3741-3783.doi: 10.1016/j.jfa.2012.09.006.

    [10]

    G. R. Goldstein, J. A. Goldstein and A. Rhandi, Kolmogorov equations perturbed by an inverse-square potential, Disc.Cont.Dyn.Syst.-Series S, 4 (2011), 623-630.doi: 10.3934/dcdss.2011.4.623.

    [11]

    J. A. Goldstein and I. Kombe, Nonlinear degenerate parabolic equations with singular lower-order term, Adv. Diff. Equat., 8 (2003), 1153-1192.

    [12]

    J. A. Goldstein and Q. S. Zhang, Linear parabolic equations with strong singular potentials, Trans. Amer. Math. Soc., 355 (2003), 197-211.doi: 10.1090/S0002-9947-02-03057-X.

    [13]

    N. Ghoussoub and A. Moradifam, Bessel potentials and optimal Hardy and Hardy-Rellich inequalities, Math. Ann., 349 (2011), 1-57.doi: 10.1007/s00208-010-0510-x.

    [14]

    M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation, Nonlinear Anal. Theory, Methods and Appl., 11 (1987), 1103-1133.

    [15]

    N. I. Karachalios, Weyl's type estimates on the eigenvalues of critical Schrödinger operators, Lett. Math. Phys., 83 (2008), 189-199.doi: 10.1007/s11005-007-0218-3.

    [16]

    N. I. Karachalios and N. B. Zographopoulos, The semiflow of a reaction diffusion equation with a singular potential, Manuscripta Math., 130 (2009), 63-91.doi: 10.1007/s00229-009-0284-1.

    [17]

    L. Moschini and A. Tesei, Parabolic Harnack Inequality for the heat equation with inverse-square potential, Forum Math., 19 (2007), 407-427.doi: 10.1515/FORUM.2007.017.

    [18]

    L. Moschini, G. Reyes and A. Tesei, Nonuniqueness of solutions to semilinear parabolic equations with singular coefficients, Comm. Pure Appl. Anal., 1 (2006), 155-179.

    [19]

    G. Reyes and A. Tesei, Self-similar solutions of a semilinear parabolic equation with inverse-square potential, J. Diff. Equations, 219 (2005), 40-77.doi: 10.1016/j.jde.2005.06.031.

    [20]

    J. M. Tölle, Uniqueness of weighted sobolev spaces with weakly differentiable weights, J. Funct. Analysis, 263 (2012), 3195-3223doi: 10.1016/j.jfa.2012.08.002.

    [21]

    J. Vancostenoble and E. Zuazua, Null Controllability for the heat equation with singular inverse-square potentials, J. Funct. Analysis, 254 (2008), 1864-1902.doi: 10.1016/j.jfa.2007.12.015.

    [22]

    J. L. Vázquez and N. B. Zographopoulos, Functional aspects of the Hardy inequality. Appearance of a hidden energy, J. Evol. Equ., 12 (2012), 713?739.doi: 10.1007/s00028-012-0151-5.

    [23]

    J. L. Vázquez and N. B. Zographopoulos, Functional aspects of Hardy type inequalities, Disc. Cont. Dyn. Syst., 33 (2013), 5457-5491.doi: 10.3934/dcds.2013.33.5457.

    [24]

    J. L. Vázquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153.doi: 10.1006/jfan.1999.3556.

    [25]

    N. B. Zographopoulos, Weyl's type estimates on the eigenvalues of critical Schrödinger operators using improved Hardy-Sobolev inequalities, J. Physics A: Math. Theor., 42 (2009), 465204.doi: 10.1088/1751-8113/42/46/465204.

    [26]

    N. B. Zographopoulos, Existence of extremal functions for a Hardy-Sobolev inequality, J. Funct. Anal., 259 (2010), 308-314.doi: 10.1016/j.jfa.2010.03.020.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(78) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return