March  2014, 13(2): 811-821. doi: 10.3934/cpaa.2014.13.811

Radial and non radial ground states for a class of dilation invariant fourth order semilinear elliptic equations on $R^n$

1. 

Dipartimento di Matematica, Università di Torino, via Carlo Alberto, 10-10123 Torino, Italy

Received  April 2013 Revised  July 2013 Published  October 2013

We prove existence of extremal functions for some Rellich-Sobolev type inequalities involving the $L^2$ norm of the Laplacian as a leading term and the $L^2$ norm of the gradient, weighted with a Hardy potential. Moreover we exhibit a breaking symmetry phenomenon when the nonlinearity has a growth close to the critical one and the singular potential increases in strength.
Citation: Paolo Caldiroli. Radial and non radial ground states for a class of dilation invariant fourth order semilinear elliptic equations on $R^n$. Communications on Pure & Applied Analysis, 2014, 13 (2) : 811-821. doi: 10.3934/cpaa.2014.13.811
References:
[1]

Adimurthi, M. Grossi and S. Santra, Optimal Hardy-Rellich inequalities, maximum principle and related eigenvalue problem,, J. Funct. Anal., 240 (2006), 36.  doi: 10.1016/j.jfa.2006.07.011.  Google Scholar

[2]

Adimurthi and S. Santra, Generalized Hardy-Rellich inequalities in critical dimensions and its applications,, Commun. Contemp. Math., 11 (2009), 367.  doi: 10.1142/S0219199709003405.  Google Scholar

[3]

C. O. Alves and J. M. do Ò, Positive solutions of a fourth-order semilinear problem involving critical growth,, Adv. Nonlinear Stud., 2 (2002), 437.   Google Scholar

[4]

M. Bhakta and R. Musina, Entire solutions for a class of variational problems involving the biharmonic operator and Rellich potentials,, Nonlinear Anal. T.M.A., 75 (2012), 3836.  doi: 10.1016/j.na.2012.02.005.  Google Scholar

[5]

P. Caldiroli and R. Musina, On Caffarelli-Kohn-Nirenberg type inequalities for the weighted biharmonic operator in cones,, Milan J. Math., 79 (2011), 657.  doi: 10.1007/s00032-011-0167-2.  Google Scholar

[6]

P. Caldiroli and R. Musina, A class of second order dilation invariant inequalities,, in, ().   Google Scholar

[7]

F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions,, Comm. Pure Appl. Math., 54 (2001), 229.  doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.  Google Scholar

[8]

N. Ghoussoub and A. Moradifam, Bessel pairs and optimal Hardy and Hardy-Rellich inequalities,, Math. Ann., 349 (2011), 1.  doi: 10.1007/s00208-010-0510-x.  Google Scholar

[9]

N. Ghoussoub and A. Moradifam, "Functional Inequalities: New Perspectives and New Applications,", Mathematical Surveys and Monographs, (2013).   Google Scholar

[10]

C.-S. Lin, Interpolation inequalities with weights,, Comm. Part. Diff. Eq., 11 (1986), 1515.  doi: 10.1080/03605308608820473.  Google Scholar

[11]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The Limit Case, Part 1,, Rev. Mat. Iberoam., 1 (1985), 145.  doi: 10.4171/RMI/6.  Google Scholar

[12]

E. Mitidieri, A Rellich type identity and applications,, Comm. Part. Diff. Eq., 18 (1993), 125.  doi: 10.1080/03605309308820923.  Google Scholar

[13]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $\R^N$,, Diff. Int. Eq., 9 (1996), 465.   Google Scholar

[14]

A. Moradifam, Optimal weighted Hardy-Rellich inequalities on $H^2 \cap H^1_0$,, J. London. Math. Soc., 85 (2011), 22.  doi: 10.1112/jlms/jdr045.  Google Scholar

[15]

R. Musina, Weighted Sobolev spaces of radially symmetric functions,, Ann. Mat. Pura Appl., ().  doi: 10.1007/s10231-013-0348-4.  Google Scholar

[16]

E. S. Noussair, C. A. Swanson and J. Yang, Transcritical Biharmonic Equations in $R^N$,, Funkcialaj Ekvacioj, 35 (1992), 533.   Google Scholar

[17]

F. Rellich, Halbbeschränkte Differentialoperatoren höherer Ordnung,, in, (1954), 243.   Google Scholar

[18]

F. Rellich, "Perturbation Theory of Eigenvalue Problems,", Gordon and Breach, (1969).   Google Scholar

[19]

M. Struwe, "Variational Methods,", fourth edition, (2008).  doi: PMCid:PMC2582268.  Google Scholar

[20]

C. A. Swanson, The best Sobolev constant,, Appl. Anal., 47 (1992), 227.  doi: 10.1080/00036819208840142.  Google Scholar

[21]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent,, Adv. Differential Eq., 1 (1996), 241.   Google Scholar

[22]

A. Tertikas and N. B. Zographopoulos, Best constants in the Hardy-Rellich inequalities and related improvements,, Adv. Math., 209 (2007), 407.  doi: 10.1016/j.aim.2006.05.011.  Google Scholar

show all references

References:
[1]

Adimurthi, M. Grossi and S. Santra, Optimal Hardy-Rellich inequalities, maximum principle and related eigenvalue problem,, J. Funct. Anal., 240 (2006), 36.  doi: 10.1016/j.jfa.2006.07.011.  Google Scholar

[2]

Adimurthi and S. Santra, Generalized Hardy-Rellich inequalities in critical dimensions and its applications,, Commun. Contemp. Math., 11 (2009), 367.  doi: 10.1142/S0219199709003405.  Google Scholar

[3]

C. O. Alves and J. M. do Ò, Positive solutions of a fourth-order semilinear problem involving critical growth,, Adv. Nonlinear Stud., 2 (2002), 437.   Google Scholar

[4]

M. Bhakta and R. Musina, Entire solutions for a class of variational problems involving the biharmonic operator and Rellich potentials,, Nonlinear Anal. T.M.A., 75 (2012), 3836.  doi: 10.1016/j.na.2012.02.005.  Google Scholar

[5]

P. Caldiroli and R. Musina, On Caffarelli-Kohn-Nirenberg type inequalities for the weighted biharmonic operator in cones,, Milan J. Math., 79 (2011), 657.  doi: 10.1007/s00032-011-0167-2.  Google Scholar

[6]

P. Caldiroli and R. Musina, A class of second order dilation invariant inequalities,, in, ().   Google Scholar

[7]

F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions,, Comm. Pure Appl. Math., 54 (2001), 229.  doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.  Google Scholar

[8]

N. Ghoussoub and A. Moradifam, Bessel pairs and optimal Hardy and Hardy-Rellich inequalities,, Math. Ann., 349 (2011), 1.  doi: 10.1007/s00208-010-0510-x.  Google Scholar

[9]

N. Ghoussoub and A. Moradifam, "Functional Inequalities: New Perspectives and New Applications,", Mathematical Surveys and Monographs, (2013).   Google Scholar

[10]

C.-S. Lin, Interpolation inequalities with weights,, Comm. Part. Diff. Eq., 11 (1986), 1515.  doi: 10.1080/03605308608820473.  Google Scholar

[11]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The Limit Case, Part 1,, Rev. Mat. Iberoam., 1 (1985), 145.  doi: 10.4171/RMI/6.  Google Scholar

[12]

E. Mitidieri, A Rellich type identity and applications,, Comm. Part. Diff. Eq., 18 (1993), 125.  doi: 10.1080/03605309308820923.  Google Scholar

[13]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $\R^N$,, Diff. Int. Eq., 9 (1996), 465.   Google Scholar

[14]

A. Moradifam, Optimal weighted Hardy-Rellich inequalities on $H^2 \cap H^1_0$,, J. London. Math. Soc., 85 (2011), 22.  doi: 10.1112/jlms/jdr045.  Google Scholar

[15]

R. Musina, Weighted Sobolev spaces of radially symmetric functions,, Ann. Mat. Pura Appl., ().  doi: 10.1007/s10231-013-0348-4.  Google Scholar

[16]

E. S. Noussair, C. A. Swanson and J. Yang, Transcritical Biharmonic Equations in $R^N$,, Funkcialaj Ekvacioj, 35 (1992), 533.   Google Scholar

[17]

F. Rellich, Halbbeschränkte Differentialoperatoren höherer Ordnung,, in, (1954), 243.   Google Scholar

[18]

F. Rellich, "Perturbation Theory of Eigenvalue Problems,", Gordon and Breach, (1969).   Google Scholar

[19]

M. Struwe, "Variational Methods,", fourth edition, (2008).  doi: PMCid:PMC2582268.  Google Scholar

[20]

C. A. Swanson, The best Sobolev constant,, Appl. Anal., 47 (1992), 227.  doi: 10.1080/00036819208840142.  Google Scholar

[21]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent,, Adv. Differential Eq., 1 (1996), 241.   Google Scholar

[22]

A. Tertikas and N. B. Zographopoulos, Best constants in the Hardy-Rellich inequalities and related improvements,, Adv. Math., 209 (2007), 407.  doi: 10.1016/j.aim.2006.05.011.  Google Scholar

[1]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[2]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[3]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[4]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[5]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[6]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[7]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[8]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[9]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[10]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[11]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[14]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[15]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]