\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Radial and non radial ground states for a class of dilation invariant fourth order semilinear elliptic equations on $R^n$

Abstract / Introduction Related Papers Cited by
  • We prove existence of extremal functions for some Rellich-Sobolev type inequalities involving the $L^2$ norm of the Laplacian as a leading term and the $L^2$ norm of the gradient, weighted with a Hardy potential. Moreover we exhibit a breaking symmetry phenomenon when the nonlinearity has a growth close to the critical one and the singular potential increases in strength.
    Mathematics Subject Classification: 26D10, 47F05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Adimurthi, M. Grossi and S. Santra, Optimal Hardy-Rellich inequalities, maximum principle and related eigenvalue problem, J. Funct. Anal., 240 (2006), 36-83.doi: 10.1016/j.jfa.2006.07.011.

    [2]

    Adimurthi and S. Santra, Generalized Hardy-Rellich inequalities in critical dimensions and its applications, Commun. Contemp. Math., 11 (2009), 367-394.doi: 10.1142/S0219199709003405.

    [3]

    C. O. Alves and J. M. do Ò, Positive solutions of a fourth-order semilinear problem involving critical growth, Adv. Nonlinear Stud., 2 (2002), 437-458.

    [4]

    M. Bhakta and R. Musina, Entire solutions for a class of variational problems involving the biharmonic operator and Rellich potentials, Nonlinear Anal. T.M.A., 75 (2012), 3836-3848.doi: 10.1016/j.na.2012.02.005.

    [5]

    P. Caldiroli and R. Musina, On Caffarelli-Kohn-Nirenberg type inequalities for the weighted biharmonic operator in cones, Milan J. Math., 79 (2011), 657-687.doi: 10.1007/s00032-011-0167-2.

    [6]

    P. Caldiroli and R. MusinaA class of second order dilation invariant inequalities, in "Proceedings of the Conference on Cocompact Imbeddings, Profile Decompositions, and their Applications to PDE'' (Adimurthi, K. Sandeep, I. Schindler and K. Tintarev, eds.) Trends in Mathematics series, Birkhäuser (to appear) arXiv:1210.5705.

    [7]

    F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229-258.doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.

    [8]

    N. Ghoussoub and A. Moradifam, Bessel pairs and optimal Hardy and Hardy-Rellich inequalities, Math. Ann., 349 (2011), 1-57.doi: 10.1007/s00208-010-0510-x.

    [9]

    N. Ghoussoub and A. Moradifam, "Functional Inequalities: New Perspectives and New Applications," Mathematical Surveys and Monographs, vol. 187. American Mathematical Society, (2013).

    [10]

    C.-S. Lin, Interpolation inequalities with weights, Comm. Part. Diff. Eq., 11 (1986), 1515-1538.doi: 10.1080/03605308608820473.

    [11]

    P.-L. Lions, The concentration-compactness principle in the calculus of variations. The Limit Case, Part 1, Rev. Mat. Iberoam., 1 (1985), 145-201.doi: 10.4171/RMI/6.

    [12]

    E. Mitidieri, A Rellich type identity and applications, Comm. Part. Diff. Eq., 18 (1993), 125-151.doi: 10.1080/03605309308820923.

    [13]

    E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $\R^N$, Diff. Int. Eq., 9 (1996), 465-479.

    [14]

    A. Moradifam, Optimal weighted Hardy-Rellich inequalities on $H^2 \cap H^1_0$, J. London. Math. Soc., 85 (2011), 22-40.doi: 10.1112/jlms/jdr045.

    [15]

    R. MusinaWeighted Sobolev spaces of radially symmetric functions, Ann. Mat. Pura Appl., (to appear) arXiv:1206.6957. doi: 10.1007/s10231-013-0348-4.

    [16]

    E. S. Noussair, C. A. Swanson and J. Yang, Transcritical Biharmonic Equations in $R^N$, Funkcialaj Ekvacioj, 35 (1992), 533-543.

    [17]

    F. Rellich, Halbbeschränkte Differentialoperatoren höherer Ordnung, in "Proceedings of the International Congress of Mathematicians (1954)'' (Gerretsen, J.C.H., de Groot, J., eds.), vol. III, pp. 243-250. Noordhoff, Groningen (1956).

    [18]

    F. Rellich, "Perturbation Theory of Eigenvalue Problems," Gordon and Breach, New York (1969).

    [19]

    M. Struwe, "Variational Methods," fourth edition, Springer, 2008.doi: PMCid:PMC2582268.

    [20]

    C. A. Swanson, The best Sobolev constant, Appl. Anal., 47 (1992), 227-239.doi: 10.1080/00036819208840142.

    [21]

    S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Eq., 1 (1996), 241-264.

    [22]

    A. Tertikas and N. B. Zographopoulos, Best constants in the Hardy-Rellich inequalities and related improvements, Adv. Math., 209 (2007), 407-459.doi: 10.1016/j.aim.2006.05.011.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return