• Previous Article
    Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux
  • CPAA Home
  • This Issue
  • Next Article
    Radial and non radial ground states for a class of dilation invariant fourth order semilinear elliptic equations on $R^n$
March  2014, 13(2): 823-833. doi: 10.3934/cpaa.2014.13.823

A BKM's criterion of smooth solution to the incompressible viscoelastic flow

1. 

Department of Applied Mathematics, South China Agricultural University, Guangzhou 510642, China

Received  May 2013 Revised  August 2013 Published  October 2013

In this paper, we study the regularity criterion of smooth solution to the Oldroyd model in $R^n(n=2,3)$. We obtain a Beale-Kato-Majda-type criterion in terms of vorticity in two and three space dimensions, namely, the solution $(u(t,x),F(t,x))$ does not develop singularity until $t=T$ provided that $\nabla \times u \in L^1(0,T;\dot{B}_{\infty,\infty}^0(R^n))$ in the case $n=2,3$.
Citation: Hua Qiu, Shaomei Fang. A BKM's criterion of smooth solution to the incompressible viscoelastic flow. Communications on Pure & Applied Analysis, 2014, 13 (2) : 823-833. doi: 10.3934/cpaa.2014.13.823
References:
[1]

J. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Comm. Math. Phys., 94 (1984), 61. Google Scholar

[2]

J. Y. Chemin, "Perfect Incompressible Fluids,", Oxford Lecture Ser. Math. Appl., (1998). Google Scholar

[3]

J. Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids,, SIAM J. Math. Anal., 33 (2001), 84. Google Scholar

[4]

Y. Du, C. Liu and Q. T. Zhang, A blow-up criterion for 3-D compressible viscoelasticity,, \arXiv{1202.3693}., (). Google Scholar

[5]

W. N. E, T. J. Li and P. W. Zhang, Well-posedness for the dumbbell model of polymeric fluids,, Comm. Math. Phys., 248 (2004), 409. doi: 10.1007/s00220-004-1102-y. Google Scholar

[6]

J. S. Fan and T. Ozawa, Regularity criterion for the incompressible viscoelastic fluid system,, Houston J. Math., 37 (2011), 627. Google Scholar

[7]

M. E. Gurtin, "An Introduction to Continuum Mechanics, Mathematics in Science and Engineering,", Academic Press, (1981). Google Scholar

[8]

L. B. He and L. Xu, Global well-posedness for viscoelastic fluid system in bounded domains,, SIAM J. Math. Anal., 42 (2010), 2610. doi: 10.1137/10078503X. Google Scholar

[9]

X. P. Hu and R. Hynd, A blowup criterion for ideal viscelastic flow,, \arXiv{1102.1113v1}., (). Google Scholar

[10]

X. P. Hu and D. H. Wang, Local strong solution to the compressible viscoelastic flow with large data,, J. Differential Equations, 249 (2010), 1179. doi: 10.1016/j.jde.2010.03.027. Google Scholar

[11]

X. P. Hu and D. H. Wang, Global existence for the multi-dimensional compressible viscoelastic flows,, J. Differential Equations, 250 (2011), 1200. doi: 10.1016/j.jde.2010.10.017. Google Scholar

[12]

H. Kozono,T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations,, Math. Z., 242 (2002), 251. doi: 10.1007/s002090100332. Google Scholar

[13]

R. G. Larson, "The Structure and Rheology of Complex Fluids,", Oxford University Press, (1995). Google Scholar

[14]

Z. Lei, Global existence of classical solutions for some Oldroyd-B model via the incompressible limit,, Chin. Ann. Math. Ser. B, 27 (2006), 565. doi: 10.1007/s11401-005-0041-z. Google Scholar

[15]

Z. Lei, Rotation-strain decomposition for the incompressible viscoelasticity in two dimensions,, \arXiv{1204.5763v1}., (). Google Scholar

[16]

Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids,, Arch. Rational Mech. Anal., 188 (2008), 371. doi: 10.1007/s00205-007-0089-x. Google Scholar

[17]

Z. Lei, N. Masmoudi and Y. Zhou, Remarks on the blowup criteria for Oldroyd models,, J. Differential Equations, 248 (2010), 328. doi: 10.1016/j.jde.2009.07.011. Google Scholar

[18]

Z. Lei and Y. Wang, Global solutions for micro-macro models of polymeric fluids,, J. Differential Equations, 250 (2011), 3813. doi: 10.1016/j.jde.2011.01.005. Google Scholar

[19]

Z. Lei and Y. Zhou, Global existence of classical solutions for 2D Oldroyd model via the incompressible limit,, SIAM J. Math. Anal., 37 (2005), 797. doi: 10.1137/040618813. Google Scholar

[20]

Z. Lei and Y. Zhou, BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity,, Discrete Contin. Dyn. Syst., 25 (2009), 575. doi: 10.3934/dcds.2009.25.575. Google Scholar

[21]

F. H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids,, Commun. Pure Appl. Math., 58 (2005), 1437. doi: 10.1002/cpa.20074. Google Scholar

[22]

F. H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system,, Commun. Pure Appl. Math., 61 (2008), 539. doi: 10.1002/cpa.20219. Google Scholar

[23]

C. Liu and N. G. Walkington, An Eulerian description of fluids containing viscohyperelastic particles,, Arch. Rational Mech. Anal., 159 (2001), 229. doi: 10.1007/s002050100158. Google Scholar

[24]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Texts in Applied Mathematics, (2002). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[25]

N. Masmoudi, Global existence of weak solutions to macroscopic models of polymeric flows,, J. Math. Pures Appl., 96 (2011), 502. doi: 10.1016/j.matpur.2011.04.008. Google Scholar

[26]

N. Masmoudi, Global existence of weak solutions to the FENE dumbbell model of polymeric flows,, Invent. Math., 191 (2013), 427. doi: 10.1007/s00222-012-0399-y. Google Scholar

[27]

J. Z. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluid system,, Nonlinear Anal., 72 (2010), 3222. doi: 10.1016/j.na.2009.12.022. Google Scholar

[28]

J. Z. Qian, Initial boundary value problems for the compressible viscoelastic fluid,, J. Differential Equations, 250 (2011), 848. doi: 10.1016/j.jde.2010.07.026. Google Scholar

[29]

J. Z. Qian and Z. F. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium,, Arch. Rational Mech. Anal., 198 (2010), 835. doi: 10.1007/s00205-010-0351-5. Google Scholar

[30]

H. Qiu, Regularity criteria of smooth solution to the incompressible viscoelastic flow,, Comm. Pure Appl. Anal., 12 (2013), 2873. doi: 10.3934/cpaa.2013.12.2873. Google Scholar

[31]

Y. Z. Sun and Z. F. Zhang, Global well-posedness for the 2D micro-macro models in the bounded domain,, Comm. Math. Phys., 303 (2011), 361. doi: 10.1007/s00220-010-1170-0. Google Scholar

[32]

B. Q. Yuan, Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow,, Discrete Contin. Dyn. Syst., 33 (2013), 2211. doi: 10.3934/dcds.2013.33.2211. Google Scholar

[33]

B. Q. Yuan and R. Li, The blowup criterion of a smooth solution to the incompressible viscoelastic flow,, J. Math. Anal. Anal., 406 (2013), 158. doi: 10.1016/j.jmaa.2013.04.055. Google Scholar

[34]

T. Zhang and D. Y. Fang, Global well-posedness for the incompressible viscoelastic fluids in the critical $L^p$ framework,, \arXiv{1101.5864}., (). Google Scholar

[35]

T. Zhang and D. Y. Fang, Global existence in critical spaces for incompressible viscoelastic fluids,, \arXiv{1101.5862}., (). Google Scholar

show all references

References:
[1]

J. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Comm. Math. Phys., 94 (1984), 61. Google Scholar

[2]

J. Y. Chemin, "Perfect Incompressible Fluids,", Oxford Lecture Ser. Math. Appl., (1998). Google Scholar

[3]

J. Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids,, SIAM J. Math. Anal., 33 (2001), 84. Google Scholar

[4]

Y. Du, C. Liu and Q. T. Zhang, A blow-up criterion for 3-D compressible viscoelasticity,, \arXiv{1202.3693}., (). Google Scholar

[5]

W. N. E, T. J. Li and P. W. Zhang, Well-posedness for the dumbbell model of polymeric fluids,, Comm. Math. Phys., 248 (2004), 409. doi: 10.1007/s00220-004-1102-y. Google Scholar

[6]

J. S. Fan and T. Ozawa, Regularity criterion for the incompressible viscoelastic fluid system,, Houston J. Math., 37 (2011), 627. Google Scholar

[7]

M. E. Gurtin, "An Introduction to Continuum Mechanics, Mathematics in Science and Engineering,", Academic Press, (1981). Google Scholar

[8]

L. B. He and L. Xu, Global well-posedness for viscoelastic fluid system in bounded domains,, SIAM J. Math. Anal., 42 (2010), 2610. doi: 10.1137/10078503X. Google Scholar

[9]

X. P. Hu and R. Hynd, A blowup criterion for ideal viscelastic flow,, \arXiv{1102.1113v1}., (). Google Scholar

[10]

X. P. Hu and D. H. Wang, Local strong solution to the compressible viscoelastic flow with large data,, J. Differential Equations, 249 (2010), 1179. doi: 10.1016/j.jde.2010.03.027. Google Scholar

[11]

X. P. Hu and D. H. Wang, Global existence for the multi-dimensional compressible viscoelastic flows,, J. Differential Equations, 250 (2011), 1200. doi: 10.1016/j.jde.2010.10.017. Google Scholar

[12]

H. Kozono,T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations,, Math. Z., 242 (2002), 251. doi: 10.1007/s002090100332. Google Scholar

[13]

R. G. Larson, "The Structure and Rheology of Complex Fluids,", Oxford University Press, (1995). Google Scholar

[14]

Z. Lei, Global existence of classical solutions for some Oldroyd-B model via the incompressible limit,, Chin. Ann. Math. Ser. B, 27 (2006), 565. doi: 10.1007/s11401-005-0041-z. Google Scholar

[15]

Z. Lei, Rotation-strain decomposition for the incompressible viscoelasticity in two dimensions,, \arXiv{1204.5763v1}., (). Google Scholar

[16]

Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids,, Arch. Rational Mech. Anal., 188 (2008), 371. doi: 10.1007/s00205-007-0089-x. Google Scholar

[17]

Z. Lei, N. Masmoudi and Y. Zhou, Remarks on the blowup criteria for Oldroyd models,, J. Differential Equations, 248 (2010), 328. doi: 10.1016/j.jde.2009.07.011. Google Scholar

[18]

Z. Lei and Y. Wang, Global solutions for micro-macro models of polymeric fluids,, J. Differential Equations, 250 (2011), 3813. doi: 10.1016/j.jde.2011.01.005. Google Scholar

[19]

Z. Lei and Y. Zhou, Global existence of classical solutions for 2D Oldroyd model via the incompressible limit,, SIAM J. Math. Anal., 37 (2005), 797. doi: 10.1137/040618813. Google Scholar

[20]

Z. Lei and Y. Zhou, BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity,, Discrete Contin. Dyn. Syst., 25 (2009), 575. doi: 10.3934/dcds.2009.25.575. Google Scholar

[21]

F. H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids,, Commun. Pure Appl. Math., 58 (2005), 1437. doi: 10.1002/cpa.20074. Google Scholar

[22]

F. H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system,, Commun. Pure Appl. Math., 61 (2008), 539. doi: 10.1002/cpa.20219. Google Scholar

[23]

C. Liu and N. G. Walkington, An Eulerian description of fluids containing viscohyperelastic particles,, Arch. Rational Mech. Anal., 159 (2001), 229. doi: 10.1007/s002050100158. Google Scholar

[24]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Texts in Applied Mathematics, (2002). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[25]

N. Masmoudi, Global existence of weak solutions to macroscopic models of polymeric flows,, J. Math. Pures Appl., 96 (2011), 502. doi: 10.1016/j.matpur.2011.04.008. Google Scholar

[26]

N. Masmoudi, Global existence of weak solutions to the FENE dumbbell model of polymeric flows,, Invent. Math., 191 (2013), 427. doi: 10.1007/s00222-012-0399-y. Google Scholar

[27]

J. Z. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluid system,, Nonlinear Anal., 72 (2010), 3222. doi: 10.1016/j.na.2009.12.022. Google Scholar

[28]

J. Z. Qian, Initial boundary value problems for the compressible viscoelastic fluid,, J. Differential Equations, 250 (2011), 848. doi: 10.1016/j.jde.2010.07.026. Google Scholar

[29]

J. Z. Qian and Z. F. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium,, Arch. Rational Mech. Anal., 198 (2010), 835. doi: 10.1007/s00205-010-0351-5. Google Scholar

[30]

H. Qiu, Regularity criteria of smooth solution to the incompressible viscoelastic flow,, Comm. Pure Appl. Anal., 12 (2013), 2873. doi: 10.3934/cpaa.2013.12.2873. Google Scholar

[31]

Y. Z. Sun and Z. F. Zhang, Global well-posedness for the 2D micro-macro models in the bounded domain,, Comm. Math. Phys., 303 (2011), 361. doi: 10.1007/s00220-010-1170-0. Google Scholar

[32]

B. Q. Yuan, Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow,, Discrete Contin. Dyn. Syst., 33 (2013), 2211. doi: 10.3934/dcds.2013.33.2211. Google Scholar

[33]

B. Q. Yuan and R. Li, The blowup criterion of a smooth solution to the incompressible viscoelastic flow,, J. Math. Anal. Anal., 406 (2013), 158. doi: 10.1016/j.jmaa.2013.04.055. Google Scholar

[34]

T. Zhang and D. Y. Fang, Global well-posedness for the incompressible viscoelastic fluids in the critical $L^p$ framework,, \arXiv{1101.5864}., (). Google Scholar

[35]

T. Zhang and D. Y. Fang, Global existence in critical spaces for incompressible viscoelastic fluids,, \arXiv{1101.5862}., (). Google Scholar

[1]

Daoyuan Fang, Ting Zhang, Ruizhao Zi. Dispersive effects of the incompressible viscoelastic fluids. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5261-5295. doi: 10.3934/dcds.2018233

[2]

Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873

[3]

Baoquan Yuan. Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2211-2219. doi: 10.3934/dcds.2013.33.2211

[4]

Colette Guillopé, Zaynab Salloum, Raafat Talhouk. Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1001-1028. doi: 10.3934/dcdsb.2010.14.1001

[5]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[6]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[7]

Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 657-677. doi: 10.3934/dcds.2012.32.657

[8]

Nicolas Crouseilles, Mohammed Lemou, SV Raghurama Rao, Ankit Ruhi, Muddu Sekhar. Asymptotic preserving scheme for a kinetic model describing incompressible fluids. Kinetic & Related Models, 2016, 9 (1) : 51-74. doi: 10.3934/krm.2016.9.51

[9]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[10]

M. Bulíček, P. Kaplický. Incompressible fluids with shear rate and pressure dependent viscosity: Regularity of steady planar flows. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 41-50. doi: 10.3934/dcdss.2008.1.41

[11]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[12]

Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551

[13]

Matthias Hieber. Remarks on the theory of Oldroyd-B fluids in exterior domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1307-1313. doi: 10.3934/dcdss.2013.6.1307

[14]

Michela Eleuteri, Elisabetta Rocca, Giulio Schimperna. On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2497-2522. doi: 10.3934/dcds.2015.35.2497

[15]

Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure & Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845

[16]

Miroslav Bulíček, Eduard Feireisl, Josef Málek, Roman Shvydkoy. On the motion of incompressible inhomogeneous Euler-Korteweg fluids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 497-515. doi: 10.3934/dcdss.2010.3.497

[17]

Xiangsheng Xu. Regularity theorems for a biological network formulation model in two space dimensions. Kinetic & Related Models, 2018, 11 (2) : 397-408. doi: 10.3934/krm.2018018

[18]

Giovambattista Amendola, Sandra Carillo, John Murrough Golden, Adele Manes. Viscoelastic fluids: Free energies, differential problems and asymptotic behaviour. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1815-1835. doi: 10.3934/dcdsb.2014.19.1815

[19]

Paolo Secchi. An alpha model for compressible fluids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 351-359. doi: 10.3934/dcdss.2010.3.351

[20]

Matti Lassas, Eero Saksman, Samuli Siltanen. Discretization-invariant Bayesian inversion and Besov space priors. Inverse Problems & Imaging, 2009, 3 (1) : 87-122. doi: 10.3934/ipi.2009.3.87

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]