• Previous Article
    Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type
  • CPAA Home
  • This Issue
  • Next Article
    Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux
March  2014, 13(2): 859-880. doi: 10.3934/cpaa.2014.13.859

The global solvability of a sixth order Cahn-Hilliard type equation via the Bäcklund transformation

1. 

System Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw

2. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw

Received  December 2012 Revised  June 2013 Published  October 2013

We consider again the sixth order Cahn-Hilliard type equation with a nonlinear diffusion, addressed in our previous paper in Commun. Pure Appl. Anal. 10 (2011), 1823--1847. Such PDE arises as a model of oil-water-surfactant mixtures. Applying the approach based on the Bäcklund transformation and the Leray-Schauder fixed point theorem we generalize the existence result of the above mentioned paper by imposing weaker assumptions on the data. Here we prove the global unique solvability of the problem in the Sobolev space $H^{6,1}(\Omega\times(0,T))$ under the assumption that the initial datum is in $H^3(\Omega)$ whereas previously $H^6(\Omega)$-regularity was required. Moreover, we admit a broarder class of nonlinear terms in the free energy potential.
Citation: Irena Pawłow, Wojciech M. Zajączkowski. The global solvability of a sixth order Cahn-Hilliard type equation via the Bäcklund transformation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 859-880. doi: 10.3934/cpaa.2014.13.859
References:
[1]

J. Berry, K. R. Elder and M. Grant, Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation, Phys. Rev. E, 77 (2008), 061506.

[2]

J. Berry, M. Grant and K. R. Elder, Diffusive atomistic dynamics of edge dislocations in two dimensions, Phys. Rev. E, 73 (2006), 031609.

[3]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings," Nauka, Moscow, 1975 (in Russian).

[4]

K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals, Phys. Rev. E., 70 (2004), 051605.

[5]

K. R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal growth, Phys. Rev. Lett., 88 (2002), 245701.

[6]

G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases, Phys. Rev. E., 50 (1994), 1325-1335.

[7]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations, Phys. Rev. E., 47 (1993), 4289-4300.

[8]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations, Phys. Rev. E., 47 (1993), 4301-4312.

[9]

G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphiphilic systems, Phys. Rev. Lett., 65 (1990), 1116-1119.

[10]

G. Gompper and M. Schick, Self-assembling amphiphilic system, in "Phase Transitions and Critical Phenomena" (eds. C. Domb and J. Lebowitz), Academic Press, London, 16 (1994).

[11]

G. Gompper and S. Zschocke, Ginzburg-Landau theory of oil-water-surfactant mixtures, Phys. Rev. A, 46 (1992), 4836-4851.

[12]

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys., 49 (1977), 435-479.

[13]

M. D. Korzec, P. L. Evans, A. Münch and B. Wagner, Stationary solutions of driven fourth-and sixth-order Cahn-Hilliard type equations, SIAM J. Appl. Math, 69 (2008), 348-374. Available from: http://dx.doi.org/10.1137/070710949

[14]

M. Korzec, P. Nayar and P. Rybka, Global weak solutions to a sixth order Cahn-Hilliard type equation, SIAM J. Math. Anal., 44 (2012), 3369-3387. Available from: http://dx.doi.org/10.1137/100817590

[15]

M. Korzec and P. Rybka, On a higher order convective Cahn-Hilliard type equation, SIAM J. Appl. Math., 72 (2012), 1343-1360. Available from: http://dx.doi.org/10.1137/110834123

[16]

J.-L. Lions and E. Magenes, "Nonhomogeneous Boundary Value Problems and Applications," Vol. I, II, Springer Verlag, New York, 1972.

[17]

V. Mitlin, Backlund transformation associated with model B: a new equation describing the evolution of the modulated structure of the order parameter, Physics Letters A, 327 (2004), 455-460.

[18]

I. Pawłow and W. M. Zajączkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures, Commun. Pure Appl. Anal., 10 (2011), 1823-1847. Available from: http://dx.doi.org/10.3934/cpaa.2011.10.1823

[19]

I. Pawłow and W. M. Zajączkowski, On a class of sixth order viscous Cahn-Hilliard type equations, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 517-546. Available from: http://dx.doi.org/10.3934/dcdss.2013.6.517

[20]

T. V. Savina, A. A. Golovin, S. H. Davis, A. A. Nepomnyashchy and P. W. Voorhees, Faceting of a growing crystal surface by surface diffusion, Phys. Rev. E, 67 (2003), 021606. Available from: http://dx.doi.org/10.1137/110835608

[21]

S. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion, SIAM J. Math. Anal., 45 (2013), 31-63. Available from: http://dx.doi.org/10.1137/110835608

[22]

V. A. Solonnikov, A priori estimates for solutions of second order parabolic equations, Trudy Mat. Inst. Steklov, 70 (1964), 133-212 (in Russian).

[23]

V. A. Solonnikov, Boundary value problems for linear parabolic systems of differential equations of general type, Trudy Mat. Inst. Stieklov, 83 (1965), 1-162 (in Russian).

show all references

References:
[1]

J. Berry, K. R. Elder and M. Grant, Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation, Phys. Rev. E, 77 (2008), 061506.

[2]

J. Berry, M. Grant and K. R. Elder, Diffusive atomistic dynamics of edge dislocations in two dimensions, Phys. Rev. E, 73 (2006), 031609.

[3]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings," Nauka, Moscow, 1975 (in Russian).

[4]

K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals, Phys. Rev. E., 70 (2004), 051605.

[5]

K. R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal growth, Phys. Rev. Lett., 88 (2002), 245701.

[6]

G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases, Phys. Rev. E., 50 (1994), 1325-1335.

[7]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations, Phys. Rev. E., 47 (1993), 4289-4300.

[8]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations, Phys. Rev. E., 47 (1993), 4301-4312.

[9]

G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphiphilic systems, Phys. Rev. Lett., 65 (1990), 1116-1119.

[10]

G. Gompper and M. Schick, Self-assembling amphiphilic system, in "Phase Transitions and Critical Phenomena" (eds. C. Domb and J. Lebowitz), Academic Press, London, 16 (1994).

[11]

G. Gompper and S. Zschocke, Ginzburg-Landau theory of oil-water-surfactant mixtures, Phys. Rev. A, 46 (1992), 4836-4851.

[12]

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys., 49 (1977), 435-479.

[13]

M. D. Korzec, P. L. Evans, A. Münch and B. Wagner, Stationary solutions of driven fourth-and sixth-order Cahn-Hilliard type equations, SIAM J. Appl. Math, 69 (2008), 348-374. Available from: http://dx.doi.org/10.1137/070710949

[14]

M. Korzec, P. Nayar and P. Rybka, Global weak solutions to a sixth order Cahn-Hilliard type equation, SIAM J. Math. Anal., 44 (2012), 3369-3387. Available from: http://dx.doi.org/10.1137/100817590

[15]

M. Korzec and P. Rybka, On a higher order convective Cahn-Hilliard type equation, SIAM J. Appl. Math., 72 (2012), 1343-1360. Available from: http://dx.doi.org/10.1137/110834123

[16]

J.-L. Lions and E. Magenes, "Nonhomogeneous Boundary Value Problems and Applications," Vol. I, II, Springer Verlag, New York, 1972.

[17]

V. Mitlin, Backlund transformation associated with model B: a new equation describing the evolution of the modulated structure of the order parameter, Physics Letters A, 327 (2004), 455-460.

[18]

I. Pawłow and W. M. Zajączkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures, Commun. Pure Appl. Anal., 10 (2011), 1823-1847. Available from: http://dx.doi.org/10.3934/cpaa.2011.10.1823

[19]

I. Pawłow and W. M. Zajączkowski, On a class of sixth order viscous Cahn-Hilliard type equations, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 517-546. Available from: http://dx.doi.org/10.3934/dcdss.2013.6.517

[20]

T. V. Savina, A. A. Golovin, S. H. Davis, A. A. Nepomnyashchy and P. W. Voorhees, Faceting of a growing crystal surface by surface diffusion, Phys. Rev. E, 67 (2003), 021606. Available from: http://dx.doi.org/10.1137/110835608

[21]

S. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion, SIAM J. Math. Anal., 45 (2013), 31-63. Available from: http://dx.doi.org/10.1137/110835608

[22]

V. A. Solonnikov, A priori estimates for solutions of second order parabolic equations, Trudy Mat. Inst. Steklov, 70 (1964), 133-212 (in Russian).

[23]

V. A. Solonnikov, Boundary value problems for linear parabolic systems of differential equations of general type, Trudy Mat. Inst. Stieklov, 83 (1965), 1-162 (in Russian).

[1]

Aibo Liu, Changchun Liu. Cauchy problem for a sixth order Cahn-Hilliard type equation with inertial term. Evolution Equations and Control Theory, 2015, 4 (3) : 315-324. doi: 10.3934/eect.2015.4.315

[2]

Irena Pawłow, Wojciech M. Zajączkowski. A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1823-1847. doi: 10.3934/cpaa.2011.10.1823

[3]

Irena Pawłow, Wojciech M. Zajączkowski. On a class of sixth order viscous Cahn-Hilliard type equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 517-546. doi: 10.3934/dcdss.2013.6.517

[4]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[5]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[6]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[7]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations and Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[8]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations and Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[9]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[10]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[11]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[12]

L. Chupin. Existence result for a mixture of non Newtonian flows with stress diffusion using the Cahn-Hilliard formulation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 45-68. doi: 10.3934/dcdsb.2003.3.45

[13]

Nguyen Huy Tuan. Existence and limit problem for fractional fourth order subdiffusion equation and Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4551-4574. doi: 10.3934/dcdss.2021113

[14]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure and Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[15]

Kelong Cheng, Cheng Wang, Steven M. Wise, Zixia Yuan. Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2211-2229. doi: 10.3934/dcdss.2020186

[16]

Andreas C. Aristotelous, Ohannes Karakashian, Steven M. Wise. A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2211-2238. doi: 10.3934/dcdsb.2013.18.2211

[17]

Elena Bonetti, Pierluigi Colli, Luca Scarpa, Giuseppe Tomassetti. A doubly nonlinear Cahn-Hilliard system with nonlinear viscosity. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1001-1022. doi: 10.3934/cpaa.2018049

[18]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[19]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[20]

Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]