• Previous Article
    Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type
  • CPAA Home
  • This Issue
  • Next Article
    Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux
March  2014, 13(2): 859-880. doi: 10.3934/cpaa.2014.13.859

The global solvability of a sixth order Cahn-Hilliard type equation via the Bäcklund transformation

1. 

System Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw

2. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw

Received  December 2012 Revised  June 2013 Published  October 2013

We consider again the sixth order Cahn-Hilliard type equation with a nonlinear diffusion, addressed in our previous paper in Commun. Pure Appl. Anal. 10 (2011), 1823--1847. Such PDE arises as a model of oil-water-surfactant mixtures. Applying the approach based on the Bäcklund transformation and the Leray-Schauder fixed point theorem we generalize the existence result of the above mentioned paper by imposing weaker assumptions on the data. Here we prove the global unique solvability of the problem in the Sobolev space $H^{6,1}(\Omega\times(0,T))$ under the assumption that the initial datum is in $H^3(\Omega)$ whereas previously $H^6(\Omega)$-regularity was required. Moreover, we admit a broarder class of nonlinear terms in the free energy potential.
Citation: Irena Pawłow, Wojciech M. Zajączkowski. The global solvability of a sixth order Cahn-Hilliard type equation via the Bäcklund transformation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 859-880. doi: 10.3934/cpaa.2014.13.859
References:
[1]

J. Berry, K. R. Elder and M. Grant, Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation,, Phys. Rev. E, 77 (2008). Google Scholar

[2]

J. Berry, M. Grant and K. R. Elder, Diffusive atomistic dynamics of edge dislocations in two dimensions,, Phys. Rev. E, 73 (2006). Google Scholar

[3]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings,", Nauka, (1975). Google Scholar

[4]

K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals,, Phys. Rev. E., 70 (2004). Google Scholar

[5]

K. R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal growth,, Phys. Rev. Lett., 88 (2002). Google Scholar

[6]

G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases,, Phys. Rev. E., 50 (1994), 1325. Google Scholar

[7]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations,, Phys. Rev. E., 47 (1993), 4289. Google Scholar

[8]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations,, Phys. Rev. E., 47 (1993), 4301. Google Scholar

[9]

G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphiphilic systems,, Phys. Rev. Lett., 65 (1990), 1116. Google Scholar

[10]

G. Gompper and M. Schick, Self-assembling amphiphilic system,, in, 16 (1994). Google Scholar

[11]

G. Gompper and S. Zschocke, Ginzburg-Landau theory of oil-water-surfactant mixtures,, Phys. Rev. A, 46 (1992), 4836. Google Scholar

[12]

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena,, Rev. Mod. Phys., 49 (1977), 435. Google Scholar

[13]

M. D. Korzec, P. L. Evans, A. Münch and B. Wagner, Stationary solutions of driven fourth-and sixth-order Cahn-Hilliard type equations,, SIAM J. Appl. Math, 69 (2008), 348. Google Scholar

[14]

M. Korzec, P. Nayar and P. Rybka, Global weak solutions to a sixth order Cahn-Hilliard type equation,, SIAM J. Math. Anal., 44 (2012), 3369. Google Scholar

[15]

M. Korzec and P. Rybka, On a higher order convective Cahn-Hilliard type equation,, SIAM J. Appl. Math., 72 (2012), 1343. Google Scholar

[16]

J.-L. Lions and E. Magenes, "Nonhomogeneous Boundary Value Problems and Applications,", Vol. I, (1972). Google Scholar

[17]

V. Mitlin, Backlund transformation associated with model B: a new equation describing the evolution of the modulated structure of the order parameter,, Physics Letters A, 327 (2004), 455. Google Scholar

[18]

I. Pawłow and W. M. Zajączkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures,, Commun. Pure Appl. Anal., 10 (2011), 1823. Google Scholar

[19]

I. Pawłow and W. M. Zajączkowski, On a class of sixth order viscous Cahn-Hilliard type equations,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 517. Google Scholar

[20]

T. V. Savina, A. A. Golovin, S. H. Davis, A. A. Nepomnyashchy and P. W. Voorhees, Faceting of a growing crystal surface by surface diffusion,, Phys. Rev. E, 67 (2003). Google Scholar

[21]

S. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion,, SIAM J. Math. Anal., 45 (2013), 31. Google Scholar

[22]

V. A. Solonnikov, A priori estimates for solutions of second order parabolic equations,, Trudy Mat. Inst. Steklov, 70 (1964), 133. Google Scholar

[23]

V. A. Solonnikov, Boundary value problems for linear parabolic systems of differential equations of general type,, Trudy Mat. Inst. Stieklov, 83 (1965), 1. Google Scholar

show all references

References:
[1]

J. Berry, K. R. Elder and M. Grant, Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation,, Phys. Rev. E, 77 (2008). Google Scholar

[2]

J. Berry, M. Grant and K. R. Elder, Diffusive atomistic dynamics of edge dislocations in two dimensions,, Phys. Rev. E, 73 (2006). Google Scholar

[3]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings,", Nauka, (1975). Google Scholar

[4]

K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals,, Phys. Rev. E., 70 (2004). Google Scholar

[5]

K. R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal growth,, Phys. Rev. Lett., 88 (2002). Google Scholar

[6]

G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases,, Phys. Rev. E., 50 (1994), 1325. Google Scholar

[7]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations,, Phys. Rev. E., 47 (1993), 4289. Google Scholar

[8]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations,, Phys. Rev. E., 47 (1993), 4301. Google Scholar

[9]

G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphiphilic systems,, Phys. Rev. Lett., 65 (1990), 1116. Google Scholar

[10]

G. Gompper and M. Schick, Self-assembling amphiphilic system,, in, 16 (1994). Google Scholar

[11]

G. Gompper and S. Zschocke, Ginzburg-Landau theory of oil-water-surfactant mixtures,, Phys. Rev. A, 46 (1992), 4836. Google Scholar

[12]

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena,, Rev. Mod. Phys., 49 (1977), 435. Google Scholar

[13]

M. D. Korzec, P. L. Evans, A. Münch and B. Wagner, Stationary solutions of driven fourth-and sixth-order Cahn-Hilliard type equations,, SIAM J. Appl. Math, 69 (2008), 348. Google Scholar

[14]

M. Korzec, P. Nayar and P. Rybka, Global weak solutions to a sixth order Cahn-Hilliard type equation,, SIAM J. Math. Anal., 44 (2012), 3369. Google Scholar

[15]

M. Korzec and P. Rybka, On a higher order convective Cahn-Hilliard type equation,, SIAM J. Appl. Math., 72 (2012), 1343. Google Scholar

[16]

J.-L. Lions and E. Magenes, "Nonhomogeneous Boundary Value Problems and Applications,", Vol. I, (1972). Google Scholar

[17]

V. Mitlin, Backlund transformation associated with model B: a new equation describing the evolution of the modulated structure of the order parameter,, Physics Letters A, 327 (2004), 455. Google Scholar

[18]

I. Pawłow and W. M. Zajączkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures,, Commun. Pure Appl. Anal., 10 (2011), 1823. Google Scholar

[19]

I. Pawłow and W. M. Zajączkowski, On a class of sixth order viscous Cahn-Hilliard type equations,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 517. Google Scholar

[20]

T. V. Savina, A. A. Golovin, S. H. Davis, A. A. Nepomnyashchy and P. W. Voorhees, Faceting of a growing crystal surface by surface diffusion,, Phys. Rev. E, 67 (2003). Google Scholar

[21]

S. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion,, SIAM J. Math. Anal., 45 (2013), 31. Google Scholar

[22]

V. A. Solonnikov, A priori estimates for solutions of second order parabolic equations,, Trudy Mat. Inst. Steklov, 70 (1964), 133. Google Scholar

[23]

V. A. Solonnikov, Boundary value problems for linear parabolic systems of differential equations of general type,, Trudy Mat. Inst. Stieklov, 83 (1965), 1. Google Scholar

[1]

Aibo Liu, Changchun Liu. Cauchy problem for a sixth order Cahn-Hilliard type equation with inertial term. Evolution Equations & Control Theory, 2015, 4 (3) : 315-324. doi: 10.3934/eect.2015.4.315

[2]

Irena Pawłow, Wojciech M. Zajączkowski. A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1823-1847. doi: 10.3934/cpaa.2011.10.1823

[3]

Irena Pawłow, Wojciech M. Zajączkowski. On a class of sixth order viscous Cahn-Hilliard type equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 517-546. doi: 10.3934/dcdss.2013.6.517

[4]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[5]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[6]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[7]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[8]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[9]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[10]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[11]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[12]

L. Chupin. Existence result for a mixture of non Newtonian flows with stress diffusion using the Cahn-Hilliard formulation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 45-68. doi: 10.3934/dcdsb.2003.3.45

[13]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[14]

Andreas C. Aristotelous, Ohannes Karakashian, Steven M. Wise. A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2211-2238. doi: 10.3934/dcdsb.2013.18.2211

[15]

Elena Bonetti, Pierluigi Colli, Luca Scarpa, Giuseppe Tomassetti. A doubly nonlinear Cahn-Hilliard system with nonlinear viscosity. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1001-1022. doi: 10.3934/cpaa.2018049

[16]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[17]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[18]

Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037

[19]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[20]

S. Maier-Paape, Ulrich Miller. Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1137-1153. doi: 10.3934/dcds.2006.15.1137

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]