March  2014, 13(2): 949-960. doi: 10.3934/cpaa.2014.13.949

Existence and uniqueness of singular solutions for elliptic equation on the hyperbolic space

1. 

Department of Mathematics, National Central University, Chung-Li, 32001, Taiwan

2. 

Department of Mathematics, National Central University, Chung-Li 32001

3. 

Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531

Received  August 2012 Revised  June 2013 Published  October 2013

In this article, we consider the following semilinear elliptic equation on the hyperbolic space \begin{eqnarray} \Delta_{H^n} u-\lambda u+|u|^{p-1}u=0\quad on\quad H^n\setminus \{Q\} \end{eqnarray} where $\Delta_{H^n}$ is the Laplace-Beltrami operator on the hyperbolic space \begin{eqnarray} H^n=\{(x_1,\cdots, x_n,x_{n+1})|x_1^2+\cdots+x_n^2-x_{n+1}^2=-1\}, \end{eqnarray} $n>10,\ p>1, \lambda>0, $ and $Q=(0,\cdots,0,1)$. We provide the existence and uniqueness of a singular positive ``radial'' solution of the above equation for big $p$ (greater than the Joseph-Lundgren exponent, which appears if $n > 10$) as well as its asymptotic behavior.
Citation: Yen-Lin Wu, Zhi-You Chen, Jann-Long Chern, Y. Kabeya. Existence and uniqueness of singular solutions for elliptic equation on the hyperbolic space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 949-960. doi: 10.3934/cpaa.2014.13.949
References:
[1]

S. Bae, Separation structure of positive radial solutions of a semilinear elliptic equation in $R^n$,, J. Differential Equations, 194 (2003), 460.  doi: 10.1006/jdeq.2001.4162.  Google Scholar

[2]

S. Bae and T. K. Chang, On a class of semilinear elliptic equations in $R^n$,, J. Differential Equations, 185 (2002), 225.  doi: 10.1016/s0022-396(03)00172-4.  Google Scholar

[3]

C. Bandle, A. Brillard and M. Flucher, Green's function, harmonic transplantation and best Sobolev constant in spaces of constant curvature,, Trans. Amer. Math. Soc., 350 (1998), 1103.  doi: 10.1090/S0002-9947-98-02085-6.  Google Scholar

[4]

C. Bandle and Y. Kabeya, On the positive, "radial" solutions of a semilinear elliptic equation on $H^N$,, Adv. Nonlinear Anal., 1 (2012), 1.  doi: 10.1515/ana-2011-0004.  Google Scholar

[5]

C. Bandle and M. Marcus, The positive radial solutions of a class of semilinear elliptic equations,, J. Reine Angew. Math., 401 (1989), 25.   Google Scholar

[6]

M. Bonforte, F. Gazzola, G. Grillo and J. L. Vazquez, Classification of radial solutions to the Emden-Fowler equation on the hyperbolic space,, Cal. Var. Partial Differential Equations, 46 (2013), 375.   Google Scholar

[7]

J.-L. Chern, Z.-Y. Chen, J-H. Chen and Y.-L. Tang, On the classification of standing wave solutions for the Schrödinger equation,, Comm. Partial Differential Equations, 35 (2010), 275.  doi: 10.1080/03605300903419767.  Google Scholar

[8]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[9]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, Adv. Math. Suppl. Stud., 7A (1981), 369.   Google Scholar

[10]

A. Grigor'yan, "Heat Kernel and Analysis on Manifolds'',, AMS, (2009).   Google Scholar

[11]

C. Gui, W.-M. Ni and X.-F. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $R^n$,, Comm. Pure Appl. Math., 45 (1992), 1153.  doi: 10.1002/cpa.3160450906.  Google Scholar

[12]

P. Hartman, "Ordinary Differential Equations'',, Birkh\, (1982).   Google Scholar

[13]

D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources,, Arch. Rational Mech. Anal., 49 (1973), 241.   Google Scholar

[14]

S. Kumaresan and J. Prajapat, Analogue of Gidas-Ni-Nirenberg result in hyperbolic space and sphere,, Rend. Inst. Math. Univ. Trieste, 30 (1998), 107.   Google Scholar

[15]

Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u + K(x)u^p = 0$ in $R^n$,, J. Differential Equations, 95 (1992), 304.  doi: 10.1016/0022-0396(92)90034-K.  Google Scholar

[16]

Y. Liu, Y. Li and Y. Deng, Separation property of solutions for a semilinear elliptic equation,, J. Differential Equations, 163 (2000), 381.  doi: 10.1006/jdeq.1999.3735.  Google Scholar

[17]

G. Mancini and K. Sandeep, On a semilinear elliptic equation in $H^n$,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 7 (2008), 635.   Google Scholar

[18]

W.-M. Ni, On the positive radial solutions of some semilinear elliptic equations on $R^n$,, Appl. Math. Optim., 9 (1983), 373.   Google Scholar

[19]

W.-M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma-type and related topics,, Japan J. Appl. Math., 5 (1988), 1.   Google Scholar

[20]

S. Stapelkamp, The Brezis-Nirenberg problem on $H^n$: existence and uniqueness of solutions, in "Elliptic and Parabolic Problems- Rolduc and Gaeta 2001,'', Bemelmans et al. ed., (2002), 283.   Google Scholar

[21]

X.-F. Wang, On Cauchy Problem for reaction-diffusion equations,, Trans. Amer. Math. Soc., 337 (1993), 549.  doi: 10.1090/S0002-9947-1993-1153015-5.  Google Scholar

show all references

References:
[1]

S. Bae, Separation structure of positive radial solutions of a semilinear elliptic equation in $R^n$,, J. Differential Equations, 194 (2003), 460.  doi: 10.1006/jdeq.2001.4162.  Google Scholar

[2]

S. Bae and T. K. Chang, On a class of semilinear elliptic equations in $R^n$,, J. Differential Equations, 185 (2002), 225.  doi: 10.1016/s0022-396(03)00172-4.  Google Scholar

[3]

C. Bandle, A. Brillard and M. Flucher, Green's function, harmonic transplantation and best Sobolev constant in spaces of constant curvature,, Trans. Amer. Math. Soc., 350 (1998), 1103.  doi: 10.1090/S0002-9947-98-02085-6.  Google Scholar

[4]

C. Bandle and Y. Kabeya, On the positive, "radial" solutions of a semilinear elliptic equation on $H^N$,, Adv. Nonlinear Anal., 1 (2012), 1.  doi: 10.1515/ana-2011-0004.  Google Scholar

[5]

C. Bandle and M. Marcus, The positive radial solutions of a class of semilinear elliptic equations,, J. Reine Angew. Math., 401 (1989), 25.   Google Scholar

[6]

M. Bonforte, F. Gazzola, G. Grillo and J. L. Vazquez, Classification of radial solutions to the Emden-Fowler equation on the hyperbolic space,, Cal. Var. Partial Differential Equations, 46 (2013), 375.   Google Scholar

[7]

J.-L. Chern, Z.-Y. Chen, J-H. Chen and Y.-L. Tang, On the classification of standing wave solutions for the Schrödinger equation,, Comm. Partial Differential Equations, 35 (2010), 275.  doi: 10.1080/03605300903419767.  Google Scholar

[8]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[9]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, Adv. Math. Suppl. Stud., 7A (1981), 369.   Google Scholar

[10]

A. Grigor'yan, "Heat Kernel and Analysis on Manifolds'',, AMS, (2009).   Google Scholar

[11]

C. Gui, W.-M. Ni and X.-F. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $R^n$,, Comm. Pure Appl. Math., 45 (1992), 1153.  doi: 10.1002/cpa.3160450906.  Google Scholar

[12]

P. Hartman, "Ordinary Differential Equations'',, Birkh\, (1982).   Google Scholar

[13]

D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources,, Arch. Rational Mech. Anal., 49 (1973), 241.   Google Scholar

[14]

S. Kumaresan and J. Prajapat, Analogue of Gidas-Ni-Nirenberg result in hyperbolic space and sphere,, Rend. Inst. Math. Univ. Trieste, 30 (1998), 107.   Google Scholar

[15]

Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u + K(x)u^p = 0$ in $R^n$,, J. Differential Equations, 95 (1992), 304.  doi: 10.1016/0022-0396(92)90034-K.  Google Scholar

[16]

Y. Liu, Y. Li and Y. Deng, Separation property of solutions for a semilinear elliptic equation,, J. Differential Equations, 163 (2000), 381.  doi: 10.1006/jdeq.1999.3735.  Google Scholar

[17]

G. Mancini and K. Sandeep, On a semilinear elliptic equation in $H^n$,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 7 (2008), 635.   Google Scholar

[18]

W.-M. Ni, On the positive radial solutions of some semilinear elliptic equations on $R^n$,, Appl. Math. Optim., 9 (1983), 373.   Google Scholar

[19]

W.-M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma-type and related topics,, Japan J. Appl. Math., 5 (1988), 1.   Google Scholar

[20]

S. Stapelkamp, The Brezis-Nirenberg problem on $H^n$: existence and uniqueness of solutions, in "Elliptic and Parabolic Problems- Rolduc and Gaeta 2001,'', Bemelmans et al. ed., (2002), 283.   Google Scholar

[21]

X.-F. Wang, On Cauchy Problem for reaction-diffusion equations,, Trans. Amer. Math. Soc., 337 (1993), 549.  doi: 10.1090/S0002-9947-1993-1153015-5.  Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[4]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[5]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[6]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[7]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[8]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[9]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[10]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[11]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[12]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[15]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[16]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[17]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[18]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[19]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[20]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (1)

[Back to Top]