March  2014, 13(2): 961-975. doi: 10.3934/cpaa.2014.13.961

Periodic solutions of the Brillouin electron beam focusing equation

1. 

Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche, 1, 60131, Ancona, Italy

2. 

Departamento de Matemática Aplicada, Universidad de Granada, 18071, Granada, Spain

Received  February 2013 Revised  September 2013 Published  October 2013

Quite unexpectedly with respect to the numerical and analytical results found in literature, we establish a new range for the real parameter $b$ for which the existence of $2\pi-$periodic solutions of the Brillouin focusing beam equation \begin{eqnarray} \ddot{x}+b(1+\cos t)x=\frac{1}{x} \end{eqnarray} is guaranteed. This is possible thanks to suitable nonresonance conditions acting on the rotation number of the solutions in the phase plane.
Citation: Maurizio Garrione, Manuel Zamora. Periodic solutions of the Brillouin electron beam focusing equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 961-975. doi: 10.3934/cpaa.2014.13.961
References:
[1]

V. Bevc, J. L. Palmer and C. Süsskind, On the design of the transition region of axisymmetric, magnetically focused beam valves,, J. British Inst. Radio Engineer., 18 (1958), 696.   Google Scholar

[2]

D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillators at resonance,, Discrete Contin. Dyn. Syst., 8 (2002), 907.  doi: 10.3934/dcds.2002.8.907.  Google Scholar

[3]

A. Boscaggin and M. Garrione, Resonance and rotation numbers for planar Hamiltonian systems: multiplicity results via the Poincaré-Birkhoff theorem,, Nonlinear Anal., 74 (2011), 4166.  doi: 10.1016/j.na.2011.03.051.  Google Scholar

[4]

H. Broer and M. Levi, Geometrical aspects of stability theory for Hill's equations,, Arch. Rational Mech. Anal., 131 (1995), 225.  doi: 10.1007/BF00382887.  Google Scholar

[5]

A. Cabada and J. A. Cid, On comparison principles for the periodic Hill's equation,, J. Lond. Math. Soc., 86 (2012), 272.  doi: 10.1112/jlms/jds001.  Google Scholar

[6]

M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equations with singularities,, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 231.  doi: 10.1017/S030821050003211X.  Google Scholar

[7]

T. Ding, A boundary value problem for the periodic Brillouin focusing system,, Acta Sci. Natur. Univ. Pekinensis, 11 (1965), 31.   Google Scholar

[8]

C. Fabry, Periodic solutions of the equation $x'' + f(t, x)=0$,, S\'eminaire de Math\'ematique, 117 (1987).   Google Scholar

[9]

C. Fabry and P. Habets, Periodic solutions of second order differential equations with superlinear asymmetric nonlinearities,, Arch. Math. (Basel), 60 (1993), 266.  doi: 10.1007/BF01198811.  Google Scholar

[10]

A. Fonda and A. Sfecci, A general method for the existence of periodic solutions of differential systems in the plane,, J. Differential Equations, 252 (2012), 1369.  doi: 10.1016/j.jde.2011.08.005.  Google Scholar

[11]

A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth,, Nonlinear Anal., 74 (2011), 2485.  doi: 10.1016/j.na.2010.12.004.  Google Scholar

[12]

W. Magnus and S. Winkler, "Hill's Equation,", corrected reprint of 1966 edition, (1966).   Google Scholar

[13]

J. Ren, Z. Cheng and S. Siegmund, Positive periodic solution for Brillouin electron beam focusing systems,, Discrete Cont. Dyn. Syst. Ser. B, 16 (2011), 385.  doi: 10.3934/dcdsb.2011.16.385.  Google Scholar

[14]

P.J. Torres, Existence and uniqueness of elliptic periodic solutions of the Brillouin electron beam focusing system,, Math. Methods Appl. Sci., 23 (2000), 1139.  doi: 10.1002/1099-1476(20000910)23:13<1139::AID-MMA155>3.0.CO;2-J.  Google Scholar

[15]

P.J. Torres, Twist solutions of a Hill's equation with singular term,, Adv. Nonlinear Stud., 2 (2002), 279.   Google Scholar

[16]

P.J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem,, J. Differential Equations, 190 (2003), 643.  doi: 10.1016/S0022-0396(02)00152-3.  Google Scholar

[17]

Q. Yao, Periodic positive solution to a class of singular second-order ordinary differential equations,, Acta Appl. Math., 110 (2010), 871.  doi: 10.1007/s10440-009-9482-9.  Google Scholar

[18]

Y. Ye and X. Wang, Nonlinear differential equations arising in the theory of electron beam focusing,, Acta Math. Appl. Sinica, 1 (1978), 13.   Google Scholar

[19]

M. Zhang, Periodic solutions of Liénard equations with singular forces of repulsive type,, J. Math. Anal. Appl., 203 (1996), 254.  doi: 10.1006/jmaa.1996.0378.  Google Scholar

[20]

M. Zhang, A relationship between the periodic and the Dirichlet BVPs of singular differential equations,, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1099.  doi: 10.1017/S0308210500030080.  Google Scholar

[21]

M. Zhang, Periodic solutions of equations of Emarkov-Pinney type,, Adv. Nonlinear Stud., 6 (2006), 57.   Google Scholar

show all references

References:
[1]

V. Bevc, J. L. Palmer and C. Süsskind, On the design of the transition region of axisymmetric, magnetically focused beam valves,, J. British Inst. Radio Engineer., 18 (1958), 696.   Google Scholar

[2]

D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillators at resonance,, Discrete Contin. Dyn. Syst., 8 (2002), 907.  doi: 10.3934/dcds.2002.8.907.  Google Scholar

[3]

A. Boscaggin and M. Garrione, Resonance and rotation numbers for planar Hamiltonian systems: multiplicity results via the Poincaré-Birkhoff theorem,, Nonlinear Anal., 74 (2011), 4166.  doi: 10.1016/j.na.2011.03.051.  Google Scholar

[4]

H. Broer and M. Levi, Geometrical aspects of stability theory for Hill's equations,, Arch. Rational Mech. Anal., 131 (1995), 225.  doi: 10.1007/BF00382887.  Google Scholar

[5]

A. Cabada and J. A. Cid, On comparison principles for the periodic Hill's equation,, J. Lond. Math. Soc., 86 (2012), 272.  doi: 10.1112/jlms/jds001.  Google Scholar

[6]

M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equations with singularities,, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 231.  doi: 10.1017/S030821050003211X.  Google Scholar

[7]

T. Ding, A boundary value problem for the periodic Brillouin focusing system,, Acta Sci. Natur. Univ. Pekinensis, 11 (1965), 31.   Google Scholar

[8]

C. Fabry, Periodic solutions of the equation $x'' + f(t, x)=0$,, S\'eminaire de Math\'ematique, 117 (1987).   Google Scholar

[9]

C. Fabry and P. Habets, Periodic solutions of second order differential equations with superlinear asymmetric nonlinearities,, Arch. Math. (Basel), 60 (1993), 266.  doi: 10.1007/BF01198811.  Google Scholar

[10]

A. Fonda and A. Sfecci, A general method for the existence of periodic solutions of differential systems in the plane,, J. Differential Equations, 252 (2012), 1369.  doi: 10.1016/j.jde.2011.08.005.  Google Scholar

[11]

A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth,, Nonlinear Anal., 74 (2011), 2485.  doi: 10.1016/j.na.2010.12.004.  Google Scholar

[12]

W. Magnus and S. Winkler, "Hill's Equation,", corrected reprint of 1966 edition, (1966).   Google Scholar

[13]

J. Ren, Z. Cheng and S. Siegmund, Positive periodic solution for Brillouin electron beam focusing systems,, Discrete Cont. Dyn. Syst. Ser. B, 16 (2011), 385.  doi: 10.3934/dcdsb.2011.16.385.  Google Scholar

[14]

P.J. Torres, Existence and uniqueness of elliptic periodic solutions of the Brillouin electron beam focusing system,, Math. Methods Appl. Sci., 23 (2000), 1139.  doi: 10.1002/1099-1476(20000910)23:13<1139::AID-MMA155>3.0.CO;2-J.  Google Scholar

[15]

P.J. Torres, Twist solutions of a Hill's equation with singular term,, Adv. Nonlinear Stud., 2 (2002), 279.   Google Scholar

[16]

P.J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem,, J. Differential Equations, 190 (2003), 643.  doi: 10.1016/S0022-0396(02)00152-3.  Google Scholar

[17]

Q. Yao, Periodic positive solution to a class of singular second-order ordinary differential equations,, Acta Appl. Math., 110 (2010), 871.  doi: 10.1007/s10440-009-9482-9.  Google Scholar

[18]

Y. Ye and X. Wang, Nonlinear differential equations arising in the theory of electron beam focusing,, Acta Math. Appl. Sinica, 1 (1978), 13.   Google Scholar

[19]

M. Zhang, Periodic solutions of Liénard equations with singular forces of repulsive type,, J. Math. Anal. Appl., 203 (1996), 254.  doi: 10.1006/jmaa.1996.0378.  Google Scholar

[20]

M. Zhang, A relationship between the periodic and the Dirichlet BVPs of singular differential equations,, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1099.  doi: 10.1017/S0308210500030080.  Google Scholar

[21]

M. Zhang, Periodic solutions of equations of Emarkov-Pinney type,, Adv. Nonlinear Stud., 6 (2006), 57.   Google Scholar

[1]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[2]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[3]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[6]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[9]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[10]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[11]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[12]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[13]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[14]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[15]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[16]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[17]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[18]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[19]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[20]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]