• Previous Article
    The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction
  • CPAA Home
  • This Issue
  • Next Article
    Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems
January  2014, 13(1): 97-118. doi: 10.3934/cpaa.2014.13.97

Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities

1. 

Department of Mathematical and Systems Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan

2. 

Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551

3. 

Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City, 603-8555, Japan

Received  April 2012 Revised  May 2013 Published  July 2013

We study the asymptotic behavior of the ground state for a class of quasilinear Schrödinger equations with general nonlinearities. By the variational argument and dual approach, we show the asymptotic non-degeneracy and uniqueness of the ground state.
Citation: Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97
References:
[1]

S. Adachi and T. Watanabe, $G$-invariant positive solutions for a quasilinear Schrödinger equation,, Adv. Diff. Eqns., 16 (2011), 289.   Google Scholar

[2]

S. Adachi and T. Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations,, Nonlinear Anal., 75 (2012), 819.  doi: 10.1016/j.na.2011.09.015.  Google Scholar

[3]

S. Adachi and T. Watanabe, Asymptotic properties of ground states of quasilinear Schrödinger equations with $H^1$-subcritical exponent,, Adv. Nonlinear Stud., 12 (2012), 255.   Google Scholar

[4]

A. Ambrosetti and Z. Q. Wang, Positive solutions to a class of quasilinear elliptic equations on $\R$,, Disc. Cont. Dyn. Syst., 9 (2003), 55.  doi: 10.3934/dcds.2003.9.55.  Google Scholar

[5]

P. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems,, J. Funct. Anal., 196 (2002), 211.  doi: 10.1016/S0022-1236(02)00013-7.  Google Scholar

[6]

H. Berestycki and P. L. Lions, Nonlinear scalar fields equations, I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[7]

J. Byeon, L. Jeanjean and M. Mariş, Symmetry and monotonicity of least energy solutions,, Calc. Var. PDE, 36 (2009), 481.  doi: 10.1007/s00526-009-0238-1.  Google Scholar

[8]

L. Brizhik, A. Eremko, B. Piette and W. J. Zakrzewski, Electron self-trapping in a discrete two-dimensional lattice,, Physica D, 159 (2001), 71.   Google Scholar

[9]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach,, Nonlinear Anal. TMA., 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[10]

M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations,, Nonlinearity, 23 (2010), 1353.  doi: 10.1088/0951-7715/23/6/006.  Google Scholar

[11]

J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in $\RN$: mountain pass and symmetric mountain pass approaches,, Top. Methods in Nonlinear Anal., 35 (2010), 253.   Google Scholar

[12]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\RN$,, Proc. Amer. Math. Soc., 131 (2003), 2399.  doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[13]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, J. Phys. Soc. Japan, 50 (1981), 3262.   Google Scholar

[14]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $R^n$,, Arch. Rat. Mech. Anal., 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[15]

J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, J. Diff. Eqns., (2003), 473.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[16]

J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method,, Comm. PDE, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[17]

W. M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problems,, Duke Math. J., 70 (1992), 247.  doi: 10.1215/S0012-7094-93-07004-4.  Google Scholar

[18]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, II,, J. Diff. Eqns., 158 (1999), 94.  doi: 10.1016/S0022-0396(99)80020-5.  Google Scholar

[19]

M. Poppenberg, K. Schmitt and Z.-Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, Calc. Var. PDE, 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[20]

J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations,, Indiana Univ. Math. J., 49 (2000), 897.  doi: 10.1512/iumj.2000.49.1893.  Google Scholar

show all references

References:
[1]

S. Adachi and T. Watanabe, $G$-invariant positive solutions for a quasilinear Schrödinger equation,, Adv. Diff. Eqns., 16 (2011), 289.   Google Scholar

[2]

S. Adachi and T. Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations,, Nonlinear Anal., 75 (2012), 819.  doi: 10.1016/j.na.2011.09.015.  Google Scholar

[3]

S. Adachi and T. Watanabe, Asymptotic properties of ground states of quasilinear Schrödinger equations with $H^1$-subcritical exponent,, Adv. Nonlinear Stud., 12 (2012), 255.   Google Scholar

[4]

A. Ambrosetti and Z. Q. Wang, Positive solutions to a class of quasilinear elliptic equations on $\R$,, Disc. Cont. Dyn. Syst., 9 (2003), 55.  doi: 10.3934/dcds.2003.9.55.  Google Scholar

[5]

P. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems,, J. Funct. Anal., 196 (2002), 211.  doi: 10.1016/S0022-1236(02)00013-7.  Google Scholar

[6]

H. Berestycki and P. L. Lions, Nonlinear scalar fields equations, I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[7]

J. Byeon, L. Jeanjean and M. Mariş, Symmetry and monotonicity of least energy solutions,, Calc. Var. PDE, 36 (2009), 481.  doi: 10.1007/s00526-009-0238-1.  Google Scholar

[8]

L. Brizhik, A. Eremko, B. Piette and W. J. Zakrzewski, Electron self-trapping in a discrete two-dimensional lattice,, Physica D, 159 (2001), 71.   Google Scholar

[9]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach,, Nonlinear Anal. TMA., 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[10]

M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations,, Nonlinearity, 23 (2010), 1353.  doi: 10.1088/0951-7715/23/6/006.  Google Scholar

[11]

J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in $\RN$: mountain pass and symmetric mountain pass approaches,, Top. Methods in Nonlinear Anal., 35 (2010), 253.   Google Scholar

[12]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\RN$,, Proc. Amer. Math. Soc., 131 (2003), 2399.  doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[13]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, J. Phys. Soc. Japan, 50 (1981), 3262.   Google Scholar

[14]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $R^n$,, Arch. Rat. Mech. Anal., 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[15]

J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, J. Diff. Eqns., (2003), 473.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[16]

J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method,, Comm. PDE, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[17]

W. M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problems,, Duke Math. J., 70 (1992), 247.  doi: 10.1215/S0012-7094-93-07004-4.  Google Scholar

[18]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, II,, J. Diff. Eqns., 158 (1999), 94.  doi: 10.1016/S0022-0396(99)80020-5.  Google Scholar

[19]

M. Poppenberg, K. Schmitt and Z.-Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, Calc. Var. PDE, 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[20]

J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations,, Indiana Univ. Math. J., 49 (2000), 897.  doi: 10.1512/iumj.2000.49.1893.  Google Scholar

[1]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[2]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[3]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[4]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[5]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[6]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[9]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[10]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[13]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[15]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[16]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[17]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[18]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[19]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (8)

[Back to Top]