-
Previous Article
The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction
- CPAA Home
- This Issue
-
Next Article
Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems
Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities
1. | Department of Mathematical and Systems Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan |
2. | Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551 |
3. | Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City, 603-8555, Japan |
References:
[1] |
S. Adachi and T. Watanabe, $G$-invariant positive solutions for a quasilinear Schrödinger equation,, Adv. Diff. Eqns., 16 (2011), 289.
|
[2] |
S. Adachi and T. Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations,, Nonlinear Anal., 75 (2012), 819.
doi: 10.1016/j.na.2011.09.015. |
[3] |
S. Adachi and T. Watanabe, Asymptotic properties of ground states of quasilinear Schrödinger equations with $H^1$-subcritical exponent,, Adv. Nonlinear Stud., 12 (2012), 255.
|
[4] |
A. Ambrosetti and Z. Q. Wang, Positive solutions to a class of quasilinear elliptic equations on $\R$,, Disc. Cont. Dyn. Syst., 9 (2003), 55.
doi: 10.3934/dcds.2003.9.55. |
[5] |
P. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems,, J. Funct. Anal., 196 (2002), 211.
doi: 10.1016/S0022-1236(02)00013-7. |
[6] |
H. Berestycki and P. L. Lions, Nonlinear scalar fields equations, I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.
doi: 10.1007/BF00250555. |
[7] |
J. Byeon, L. Jeanjean and M. Mariş, Symmetry and monotonicity of least energy solutions,, Calc. Var. PDE, 36 (2009), 481.
doi: 10.1007/s00526-009-0238-1. |
[8] |
L. Brizhik, A. Eremko, B. Piette and W. J. Zakrzewski, Electron self-trapping in a discrete two-dimensional lattice,, Physica D, 159 (2001), 71. Google Scholar |
[9] |
M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach,, Nonlinear Anal. TMA., 56 (2004), 213.
doi: 10.1016/j.na.2003.09.008. |
[10] |
M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations,, Nonlinearity, 23 (2010), 1353.
doi: 10.1088/0951-7715/23/6/006. |
[11] |
J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in $\RN$: mountain pass and symmetric mountain pass approaches,, Top. Methods in Nonlinear Anal., 35 (2010), 253.
|
[12] |
L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\RN$,, Proc. Amer. Math. Soc., 131 (2003), 2399.
doi: 10.1090/S0002-9939-02-06821-1. |
[13] |
S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, J. Phys. Soc. Japan, 50 (1981), 3262. Google Scholar |
[14] |
M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $R^n$,, Arch. Rat. Mech. Anal., 105 (1989), 243.
doi: 10.1007/BF00251502. |
[15] |
J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, J. Diff. Eqns., (2003), 473.
doi: 10.1016/S0022-0396(02)00064-5. |
[16] |
J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method,, Comm. PDE, 29 (2004), 879.
doi: 10.1081/PDE-120037335. |
[17] |
W. M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problems,, Duke Math. J., 70 (1992), 247.
doi: 10.1215/S0012-7094-93-07004-4. |
[18] |
T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, II,, J. Diff. Eqns., 158 (1999), 94.
doi: 10.1016/S0022-0396(99)80020-5. |
[19] |
M. Poppenberg, K. Schmitt and Z.-Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, Calc. Var. PDE, 14 (2002), 329.
doi: 10.1007/s005260100105. |
[20] |
J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations,, Indiana Univ. Math. J., 49 (2000), 897.
doi: 10.1512/iumj.2000.49.1893. |
show all references
References:
[1] |
S. Adachi and T. Watanabe, $G$-invariant positive solutions for a quasilinear Schrödinger equation,, Adv. Diff. Eqns., 16 (2011), 289.
|
[2] |
S. Adachi and T. Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations,, Nonlinear Anal., 75 (2012), 819.
doi: 10.1016/j.na.2011.09.015. |
[3] |
S. Adachi and T. Watanabe, Asymptotic properties of ground states of quasilinear Schrödinger equations with $H^1$-subcritical exponent,, Adv. Nonlinear Stud., 12 (2012), 255.
|
[4] |
A. Ambrosetti and Z. Q. Wang, Positive solutions to a class of quasilinear elliptic equations on $\R$,, Disc. Cont. Dyn. Syst., 9 (2003), 55.
doi: 10.3934/dcds.2003.9.55. |
[5] |
P. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems,, J. Funct. Anal., 196 (2002), 211.
doi: 10.1016/S0022-1236(02)00013-7. |
[6] |
H. Berestycki and P. L. Lions, Nonlinear scalar fields equations, I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.
doi: 10.1007/BF00250555. |
[7] |
J. Byeon, L. Jeanjean and M. Mariş, Symmetry and monotonicity of least energy solutions,, Calc. Var. PDE, 36 (2009), 481.
doi: 10.1007/s00526-009-0238-1. |
[8] |
L. Brizhik, A. Eremko, B. Piette and W. J. Zakrzewski, Electron self-trapping in a discrete two-dimensional lattice,, Physica D, 159 (2001), 71. Google Scholar |
[9] |
M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach,, Nonlinear Anal. TMA., 56 (2004), 213.
doi: 10.1016/j.na.2003.09.008. |
[10] |
M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations,, Nonlinearity, 23 (2010), 1353.
doi: 10.1088/0951-7715/23/6/006. |
[11] |
J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in $\RN$: mountain pass and symmetric mountain pass approaches,, Top. Methods in Nonlinear Anal., 35 (2010), 253.
|
[12] |
L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\RN$,, Proc. Amer. Math. Soc., 131 (2003), 2399.
doi: 10.1090/S0002-9939-02-06821-1. |
[13] |
S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, J. Phys. Soc. Japan, 50 (1981), 3262. Google Scholar |
[14] |
M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $R^n$,, Arch. Rat. Mech. Anal., 105 (1989), 243.
doi: 10.1007/BF00251502. |
[15] |
J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, J. Diff. Eqns., (2003), 473.
doi: 10.1016/S0022-0396(02)00064-5. |
[16] |
J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method,, Comm. PDE, 29 (2004), 879.
doi: 10.1081/PDE-120037335. |
[17] |
W. M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problems,, Duke Math. J., 70 (1992), 247.
doi: 10.1215/S0012-7094-93-07004-4. |
[18] |
T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, II,, J. Diff. Eqns., 158 (1999), 94.
doi: 10.1016/S0022-0396(99)80020-5. |
[19] |
M. Poppenberg, K. Schmitt and Z.-Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, Calc. Var. PDE, 14 (2002), 329.
doi: 10.1007/s005260100105. |
[20] |
J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations,, Indiana Univ. Math. J., 49 (2000), 897.
doi: 10.1512/iumj.2000.49.1893. |
[1] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[2] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[3] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[4] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[5] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[6] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[7] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[8] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[9] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[10] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[11] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[12] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[13] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[14] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[15] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[16] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[17] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021004 |
[18] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[19] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[20] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]