• Previous Article
    The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction
  • CPAA Home
  • This Issue
  • Next Article
    Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems
January  2014, 13(1): 97-118. doi: 10.3934/cpaa.2014.13.97

Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities

1. 

Department of Mathematical and Systems Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan

2. 

Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551

3. 

Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City, 603-8555, Japan

Received  April 2012 Revised  May 2013 Published  July 2013

We study the asymptotic behavior of the ground state for a class of quasilinear Schrödinger equations with general nonlinearities. By the variational argument and dual approach, we show the asymptotic non-degeneracy and uniqueness of the ground state.
Citation: Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97
References:
[1]

S. Adachi and T. Watanabe, $G$-invariant positive solutions for a quasilinear Schrödinger equation,, Adv. Diff. Eqns., 16 (2011), 289.   Google Scholar

[2]

S. Adachi and T. Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations,, Nonlinear Anal., 75 (2012), 819.  doi: 10.1016/j.na.2011.09.015.  Google Scholar

[3]

S. Adachi and T. Watanabe, Asymptotic properties of ground states of quasilinear Schrödinger equations with $H^1$-subcritical exponent,, Adv. Nonlinear Stud., 12 (2012), 255.   Google Scholar

[4]

A. Ambrosetti and Z. Q. Wang, Positive solutions to a class of quasilinear elliptic equations on $\R$,, Disc. Cont. Dyn. Syst., 9 (2003), 55.  doi: 10.3934/dcds.2003.9.55.  Google Scholar

[5]

P. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems,, J. Funct. Anal., 196 (2002), 211.  doi: 10.1016/S0022-1236(02)00013-7.  Google Scholar

[6]

H. Berestycki and P. L. Lions, Nonlinear scalar fields equations, I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[7]

J. Byeon, L. Jeanjean and M. Mariş, Symmetry and monotonicity of least energy solutions,, Calc. Var. PDE, 36 (2009), 481.  doi: 10.1007/s00526-009-0238-1.  Google Scholar

[8]

L. Brizhik, A. Eremko, B. Piette and W. J. Zakrzewski, Electron self-trapping in a discrete two-dimensional lattice,, Physica D, 159 (2001), 71.   Google Scholar

[9]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach,, Nonlinear Anal. TMA., 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[10]

M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations,, Nonlinearity, 23 (2010), 1353.  doi: 10.1088/0951-7715/23/6/006.  Google Scholar

[11]

J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in $\RN$: mountain pass and symmetric mountain pass approaches,, Top. Methods in Nonlinear Anal., 35 (2010), 253.   Google Scholar

[12]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\RN$,, Proc. Amer. Math. Soc., 131 (2003), 2399.  doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[13]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, J. Phys. Soc. Japan, 50 (1981), 3262.   Google Scholar

[14]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $R^n$,, Arch. Rat. Mech. Anal., 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[15]

J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, J. Diff. Eqns., (2003), 473.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[16]

J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method,, Comm. PDE, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[17]

W. M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problems,, Duke Math. J., 70 (1992), 247.  doi: 10.1215/S0012-7094-93-07004-4.  Google Scholar

[18]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, II,, J. Diff. Eqns., 158 (1999), 94.  doi: 10.1016/S0022-0396(99)80020-5.  Google Scholar

[19]

M. Poppenberg, K. Schmitt and Z.-Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, Calc. Var. PDE, 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[20]

J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations,, Indiana Univ. Math. J., 49 (2000), 897.  doi: 10.1512/iumj.2000.49.1893.  Google Scholar

show all references

References:
[1]

S. Adachi and T. Watanabe, $G$-invariant positive solutions for a quasilinear Schrödinger equation,, Adv. Diff. Eqns., 16 (2011), 289.   Google Scholar

[2]

S. Adachi and T. Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations,, Nonlinear Anal., 75 (2012), 819.  doi: 10.1016/j.na.2011.09.015.  Google Scholar

[3]

S. Adachi and T. Watanabe, Asymptotic properties of ground states of quasilinear Schrödinger equations with $H^1$-subcritical exponent,, Adv. Nonlinear Stud., 12 (2012), 255.   Google Scholar

[4]

A. Ambrosetti and Z. Q. Wang, Positive solutions to a class of quasilinear elliptic equations on $\R$,, Disc. Cont. Dyn. Syst., 9 (2003), 55.  doi: 10.3934/dcds.2003.9.55.  Google Scholar

[5]

P. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems,, J. Funct. Anal., 196 (2002), 211.  doi: 10.1016/S0022-1236(02)00013-7.  Google Scholar

[6]

H. Berestycki and P. L. Lions, Nonlinear scalar fields equations, I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[7]

J. Byeon, L. Jeanjean and M. Mariş, Symmetry and monotonicity of least energy solutions,, Calc. Var. PDE, 36 (2009), 481.  doi: 10.1007/s00526-009-0238-1.  Google Scholar

[8]

L. Brizhik, A. Eremko, B. Piette and W. J. Zakrzewski, Electron self-trapping in a discrete two-dimensional lattice,, Physica D, 159 (2001), 71.   Google Scholar

[9]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach,, Nonlinear Anal. TMA., 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[10]

M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations,, Nonlinearity, 23 (2010), 1353.  doi: 10.1088/0951-7715/23/6/006.  Google Scholar

[11]

J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in $\RN$: mountain pass and symmetric mountain pass approaches,, Top. Methods in Nonlinear Anal., 35 (2010), 253.   Google Scholar

[12]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\RN$,, Proc. Amer. Math. Soc., 131 (2003), 2399.  doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[13]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, J. Phys. Soc. Japan, 50 (1981), 3262.   Google Scholar

[14]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $R^n$,, Arch. Rat. Mech. Anal., 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[15]

J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, J. Diff. Eqns., (2003), 473.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[16]

J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method,, Comm. PDE, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[17]

W. M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problems,, Duke Math. J., 70 (1992), 247.  doi: 10.1215/S0012-7094-93-07004-4.  Google Scholar

[18]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, II,, J. Diff. Eqns., 158 (1999), 94.  doi: 10.1016/S0022-0396(99)80020-5.  Google Scholar

[19]

M. Poppenberg, K. Schmitt and Z.-Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, Calc. Var. PDE, 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[20]

J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations,, Indiana Univ. Math. J., 49 (2000), 897.  doi: 10.1512/iumj.2000.49.1893.  Google Scholar

[1]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[2]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[3]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[4]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[5]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[6]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[7]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[8]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[9]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[10]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[11]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[12]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[13]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[14]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[15]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[16]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[17]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[18]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[19]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[20]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (8)

[Back to Top]