Citation: |
[1] |
H. Berestycki and, L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brazil. Mat. (N.S.), 22 (1991), 1-37. |
[2] |
L. Cao and Z. Dai, A Liouville-type theorem for an integral equations system on a half-space $R^n_+$, Journal of Mathematical Analysis and Applications, 389 (2012), 1365-1373.doi: 10.1016/j.jmaa.2012.01.015. |
[3] |
L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.doi: 10.1002/cpa.3160420304. |
[4] |
C. Jin and C. Li, Symmetry of solutions to some integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670.doi: 10.1090/S0002-9939-05-08411-X. |
[5] |
W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations, Annals of Math., 145 (1997), 547-564.doi: 10.2307/2951844. |
[6] |
W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality, Proc. Amer. Math. Soc., 136 (2008), 955-962.doi: 10.1090/S0002-9939-07-09232-5. |
[7] |
W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series on Diff. Equa. Dyn. Sys., 4, 2010. |
[8] |
W. Chen and C. Li, A sup + inf inequality near $R=0$, Advances in Math., 220 (2009), 219-245.doi: 10.1016/j.aim.2008.09.005. |
[9] |
W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Disc. Cont. Dyn. Sys., 4 (2009), 1167-1184.doi: 10.3934/dcds.2009.24.1167. |
[10] |
W. Chen, C. Li and Y. Fang, Super-polyharmonic property for a system with Navier conditions on $R^n_+$, submitted to Comm. PDEs, 2012. |
[11] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., LLVIII (2005), 1-14.doi: 10.1002/cpa.20116. |
[12] |
W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Disc. Cont. Dyn. Sys., 12 (2005), 347-354. |
[13] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. PDEs., 30 (2005), 59-65.doi: 10.1081/PDE-200044445. |
[14] |
A. Chang and P. Yang, On uniqueness of an n-th order differential equation in conformal geometry, Math. Res. Letters, 4 (1997), 1-12. |
[15] |
L. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems, Cambridge Unversity Press, New York, 2000.doi: 10.1017/CBO9780511569203. |
[16] |
Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, Advances in Math., 229 (2012), 2835-2867.doi: 10.1016/j.aim.2012.01.018. |
[17] |
B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$, Mathematical Analysis and Applications, Vol. 7a of the book series Advances in Math., Academic Press, New York, 1981. |
[18] |
E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.doi: 10.2307/2007032. |
[19] |
C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math., 123 (1996), 221-231.doi: 10.1007/s002220050023. |
[20] |
C. Li and L. Ma, Uniqueness of positive bound states to Shrodinger systems with critical exponents, SIAM J. Math. Analysis, 40 (2008), 1049-1057.doi: 10.1137/080712301. |
[21] |
C. Liu and S. Qiao, Symmetry and monotonicity for a system of integal equations, Comm. Pure Appl. Anal., 6 (2009), 1925-1932.doi: 10.3934/cpaa.2009.8.1925. |
[22] |
D. Li and R. Zhuo, An integral equation on half space, Proc. Amer. Math. Soc., 138 (2010), 2779-2791.doi: 10.1090/S0002-9939-10-10368-2. |
[23] |
L. Ma and D. Chen, A Liouville type theorem for an integral system, Comm. Pure Appl. Anal., 5 (2006), 855-859.doi: 10.3934/cpaa.2006.5.855. |
[24] |
B. Ou, A remark on a singular integral equation, Houston J. of Math., 25 (1999), 181-184. |
[25] |
J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318. |
[26] |
R. Zhuo and D. Li, A system of integral equations on half space, Journal of Mathematical Analysis and Applications, 381 (2011), 392-401.doi: 10.1016/j.jmaa.2011.02.060. |